from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(11552, base_ring=CyclotomicField(1368))
M = H._module
chi = DirichletCharacter(H, M([684,171,116]))
pari: [g,chi] = znchar(Mod(4347,11552))
χ11552(3,⋅)
χ11552(51,⋅)
χ11552(59,⋅)
χ11552(67,⋅)
χ11552(91,⋅)
χ11552(147,⋅)
χ11552(155,⋅)
χ11552(203,⋅)
χ11552(211,⋅)
χ11552(219,⋅)
χ11552(243,⋅)
χ11552(355,⋅)
χ11552(363,⋅)
χ11552(371,⋅)
χ11552(395,⋅)
χ11552(451,⋅)
χ11552(459,⋅)
χ11552(507,⋅)
χ11552(515,⋅)
χ11552(523,⋅)
χ11552(547,⋅)
χ11552(603,⋅)
χ11552(611,⋅)
χ11552(659,⋅)
χ11552(667,⋅)
χ11552(675,⋅)
χ11552(699,⋅)
χ11552(755,⋅)
χ11552(763,⋅)
χ11552(811,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(5055,1445,2529) → (−1,e(81),e(34229))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 21 | 23 |
χ11552(4347,a) |
1 | 1 | e(1368905) | e(13681091) | e(228107) | e(684221) | e(456353) | e(13681057) | e(342157) | e(342227) | e(1368179) | e(684431) |