Properties

Label 11552.4347
Modulus 1155211552
Conductor 1155211552
Order 13681368
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(11552, base_ring=CyclotomicField(1368))
 
M = H._module
 
chi = DirichletCharacter(H, M([684,171,116]))
 
pari: [g,chi] = znchar(Mod(4347,11552))
 

Basic properties

Modulus: 1155211552
Conductor: 1155211552
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 13681368
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 11552.dq

χ11552(3,)\chi_{11552}(3,\cdot) χ11552(51,)\chi_{11552}(51,\cdot) χ11552(59,)\chi_{11552}(59,\cdot) χ11552(67,)\chi_{11552}(67,\cdot) χ11552(91,)\chi_{11552}(91,\cdot) χ11552(147,)\chi_{11552}(147,\cdot) χ11552(155,)\chi_{11552}(155,\cdot) χ11552(203,)\chi_{11552}(203,\cdot) χ11552(211,)\chi_{11552}(211,\cdot) χ11552(219,)\chi_{11552}(219,\cdot) χ11552(243,)\chi_{11552}(243,\cdot) χ11552(355,)\chi_{11552}(355,\cdot) χ11552(363,)\chi_{11552}(363,\cdot) χ11552(371,)\chi_{11552}(371,\cdot) χ11552(395,)\chi_{11552}(395,\cdot) χ11552(451,)\chi_{11552}(451,\cdot) χ11552(459,)\chi_{11552}(459,\cdot) χ11552(507,)\chi_{11552}(507,\cdot) χ11552(515,)\chi_{11552}(515,\cdot) χ11552(523,)\chi_{11552}(523,\cdot) χ11552(547,)\chi_{11552}(547,\cdot) χ11552(603,)\chi_{11552}(603,\cdot) χ11552(611,)\chi_{11552}(611,\cdot) χ11552(659,)\chi_{11552}(659,\cdot) χ11552(667,)\chi_{11552}(667,\cdot) χ11552(675,)\chi_{11552}(675,\cdot) χ11552(699,)\chi_{11552}(699,\cdot) χ11552(755,)\chi_{11552}(755,\cdot) χ11552(763,)\chi_{11552}(763,\cdot) χ11552(811,)\chi_{11552}(811,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ1368)\Q(\zeta_{1368})
Fixed field: Number field defined by a degree 1368 polynomial (not computed)

Values on generators

(5055,1445,2529)(5055,1445,2529)(1,e(18),e(29342))(-1,e\left(\frac{1}{8}\right),e\left(\frac{29}{342}\right))

First values

aa 1-11133557799111113131515171721212323
χ11552(4347,a) \chi_{ 11552 }(4347, a) 1111e(9051368)e\left(\frac{905}{1368}\right)e(10911368)e\left(\frac{1091}{1368}\right)e(107228)e\left(\frac{107}{228}\right)e(221684)e\left(\frac{221}{684}\right)e(353456)e\left(\frac{353}{456}\right)e(10571368)e\left(\frac{1057}{1368}\right)e(157342)e\left(\frac{157}{342}\right)e(227342)e\left(\frac{227}{342}\right)e(1791368)e\left(\frac{179}{1368}\right)e(431684)e\left(\frac{431}{684}\right)
sage: chi.jacobi_sum(n)
 
χ11552(4347,a)   \chi_{ 11552 }(4347,a) \; at   a=\;a = e.g. 2