Properties

Label 119.80
Modulus $119$
Conductor $119$
Order $48$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(119, base_ring=CyclotomicField(48))
 
M = H._module
 
chi = DirichletCharacter(H, M([8,39]))
 
pari: [g,chi] = znchar(Mod(80,119))
 

Basic properties

Modulus: \(119\)
Conductor: \(119\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(48\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 119.s

\(\chi_{119}(3,\cdot)\) \(\chi_{119}(5,\cdot)\) \(\chi_{119}(10,\cdot)\) \(\chi_{119}(12,\cdot)\) \(\chi_{119}(24,\cdot)\) \(\chi_{119}(31,\cdot)\) \(\chi_{119}(40,\cdot)\) \(\chi_{119}(45,\cdot)\) \(\chi_{119}(54,\cdot)\) \(\chi_{119}(61,\cdot)\) \(\chi_{119}(73,\cdot)\) \(\chi_{119}(75,\cdot)\) \(\chi_{119}(80,\cdot)\) \(\chi_{119}(82,\cdot)\) \(\chi_{119}(96,\cdot)\) \(\chi_{119}(108,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Values on generators

\((52,71)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{13}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 119 }(80, a) \) \(1\)\(1\)\(e\left(\frac{17}{24}\right)\)\(e\left(\frac{47}{48}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{43}{48}\right)\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{23}{24}\right)\)\(e\left(\frac{29}{48}\right)\)\(e\left(\frac{17}{48}\right)\)\(e\left(\frac{19}{48}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 119 }(80,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 119 }(80,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 119 }(80,·),\chi_{ 119 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 119 }(80,·)) \;\) at \(\; a,b = \) e.g. 1,2