sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(119, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([8,13]))
pari:[g,chi] = znchar(Mod(97,119))
Modulus: | 119 | |
Conductor: | 119 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 16 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ119(6,⋅)
χ119(20,⋅)
χ119(27,⋅)
χ119(41,⋅)
χ119(48,⋅)
χ119(62,⋅)
χ119(90,⋅)
χ119(97,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(52,71) → (−1,e(1613))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 | 12 |
χ119(97,a) |
1 | 1 | e(83) | e(165) | −i | e(169) | e(1611) | e(81) | e(85) | e(1615) | e(1611) | e(161) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)