Properties

Label 1197.1040
Modulus 11971197
Conductor 11971197
Order 1818
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1197, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([15,12,7]))
 
pari: [g,chi] = znchar(Mod(1040,1197))
 

Basic properties

Modulus: 11971197
Conductor: 11971197
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1197.fm

χ1197(317,)\chi_{1197}(317,\cdot) χ1197(725,)\chi_{1197}(725,\cdot) χ1197(884,)\chi_{1197}(884,\cdot) χ1197(914,)\chi_{1197}(914,\cdot) χ1197(1040,)\chi_{1197}(1040,\cdot) χ1197(1136,)\chi_{1197}(1136,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

(533,514,1009)(533,514,1009)(e(56),e(23),e(718))(e\left(\frac{5}{6}\right),e\left(\frac{2}{3}\right),e\left(\frac{7}{18}\right))

First values

aa 1-11122445588101011111313161617172020
χ1197(1040,a) \chi_{ 1197 }(1040, a) 1111e(59)e\left(\frac{5}{9}\right)e(19)e\left(\frac{1}{9}\right)e(1318)e\left(\frac{13}{18}\right)e(23)e\left(\frac{2}{3}\right)e(518)e\left(\frac{5}{18}\right)e(16)e\left(\frac{1}{6}\right)e(1118)e\left(\frac{11}{18}\right)e(29)e\left(\frac{2}{9}\right)e(118)e\left(\frac{1}{18}\right)e(56)e\left(\frac{5}{6}\right)
sage: chi.jacobi_sum(n)
 
χ1197(1040,a)   \chi_{ 1197 }(1040,a) \; at   a=\;a = e.g. 2