Properties

Label 1197.1040
Modulus $1197$
Conductor $1197$
Order $18$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1197, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([15,12,7]))
 
pari: [g,chi] = znchar(Mod(1040,1197))
 

Basic properties

Modulus: \(1197\)
Conductor: \(1197\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1197.fm

\(\chi_{1197}(317,\cdot)\) \(\chi_{1197}(725,\cdot)\) \(\chi_{1197}(884,\cdot)\) \(\chi_{1197}(914,\cdot)\) \(\chi_{1197}(1040,\cdot)\) \(\chi_{1197}(1136,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((533,514,1009)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{2}{3}\right),e\left(\frac{7}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(20\)
\( \chi_{ 1197 }(1040, a) \) \(1\)\(1\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{5}{6}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1197 }(1040,a) \;\) at \(\;a = \) e.g. 2