Basic properties
Modulus: | \(125\) | |
Conductor: | \(125\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(100\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 125.i
\(\chi_{125}(2,\cdot)\) \(\chi_{125}(3,\cdot)\) \(\chi_{125}(8,\cdot)\) \(\chi_{125}(12,\cdot)\) \(\chi_{125}(13,\cdot)\) \(\chi_{125}(17,\cdot)\) \(\chi_{125}(22,\cdot)\) \(\chi_{125}(23,\cdot)\) \(\chi_{125}(27,\cdot)\) \(\chi_{125}(28,\cdot)\) \(\chi_{125}(33,\cdot)\) \(\chi_{125}(37,\cdot)\) \(\chi_{125}(38,\cdot)\) \(\chi_{125}(42,\cdot)\) \(\chi_{125}(47,\cdot)\) \(\chi_{125}(48,\cdot)\) \(\chi_{125}(52,\cdot)\) \(\chi_{125}(53,\cdot)\) \(\chi_{125}(58,\cdot)\) \(\chi_{125}(62,\cdot)\) \(\chi_{125}(63,\cdot)\) \(\chi_{125}(67,\cdot)\) \(\chi_{125}(72,\cdot)\) \(\chi_{125}(73,\cdot)\) \(\chi_{125}(77,\cdot)\) \(\chi_{125}(78,\cdot)\) \(\chi_{125}(83,\cdot)\) \(\chi_{125}(87,\cdot)\) \(\chi_{125}(88,\cdot)\) \(\chi_{125}(92,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{100})$ |
Fixed field: | Number field defined by a degree 100 polynomial |
Values on generators
\(2\) → \(e\left(\frac{93}{100}\right)\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
\( \chi_{ 125 }(42, a) \) | \(-1\) | \(1\) | \(e\left(\frac{93}{100}\right)\) | \(e\left(\frac{51}{100}\right)\) | \(e\left(\frac{43}{50}\right)\) | \(e\left(\frac{11}{25}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{79}{100}\right)\) | \(e\left(\frac{1}{50}\right)\) | \(e\left(\frac{17}{25}\right)\) | \(e\left(\frac{37}{100}\right)\) | \(e\left(\frac{27}{100}\right)\) |