sage: H = DirichletGroup(1296)
pari: g = idealstar(,1296,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 432 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{108}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{1296}(1135,\cdot)$, $\chi_{1296}(325,\cdot)$, $\chi_{1296}(1217,\cdot)$ |
First 32 of 432 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1296}(1,\cdot)\) | 1296.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{1296}(5,\cdot)\) | 1296.bu | 108 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{108}\right)\) | \(e\left(\frac{17}{54}\right)\) | \(e\left(\frac{85}{108}\right)\) | \(e\left(\frac{17}{108}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{5}{27}\right)\) | \(e\left(\frac{5}{54}\right)\) | \(e\left(\frac{55}{108}\right)\) | \(e\left(\frac{14}{27}\right)\) |
\(\chi_{1296}(7,\cdot)\) | 1296.br | 54 | no | \(-1\) | \(1\) | \(e\left(\frac{17}{54}\right)\) | \(e\left(\frac{13}{54}\right)\) | \(e\left(\frac{23}{27}\right)\) | \(e\left(\frac{47}{54}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{41}{54}\right)\) | \(e\left(\frac{17}{27}\right)\) | \(e\left(\frac{25}{54}\right)\) | \(e\left(\frac{23}{54}\right)\) |
\(\chi_{1296}(11,\cdot)\) | 1296.bs | 108 | yes | \(1\) | \(1\) | \(e\left(\frac{85}{108}\right)\) | \(e\left(\frac{23}{27}\right)\) | \(e\left(\frac{95}{108}\right)\) | \(e\left(\frac{73}{108}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{35}{54}\right)\) | \(e\left(\frac{31}{54}\right)\) | \(e\left(\frac{71}{108}\right)\) | \(e\left(\frac{17}{54}\right)\) |
\(\chi_{1296}(13,\cdot)\) | 1296.bv | 108 | yes | \(1\) | \(1\) | \(e\left(\frac{17}{108}\right)\) | \(e\left(\frac{47}{54}\right)\) | \(e\left(\frac{73}{108}\right)\) | \(e\left(\frac{47}{108}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{7}{54}\right)\) | \(e\left(\frac{17}{54}\right)\) | \(e\left(\frac{79}{108}\right)\) | \(e\left(\frac{26}{27}\right)\) |
\(\chi_{1296}(17,\cdot)\) | 1296.bc | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) |
\(\chi_{1296}(19,\cdot)\) | 1296.bi | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) |
\(\chi_{1296}(23,\cdot)\) | 1296.bn | 54 | no | \(1\) | \(1\) | \(e\left(\frac{5}{27}\right)\) | \(e\left(\frac{41}{54}\right)\) | \(e\left(\frac{35}{54}\right)\) | \(e\left(\frac{7}{54}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{20}{27}\right)\) | \(e\left(\frac{10}{27}\right)\) | \(e\left(\frac{1}{27}\right)\) | \(e\left(\frac{31}{54}\right)\) |
\(\chi_{1296}(25,\cdot)\) | 1296.bp | 54 | no | \(1\) | \(1\) | \(e\left(\frac{5}{54}\right)\) | \(e\left(\frac{17}{27}\right)\) | \(e\left(\frac{31}{54}\right)\) | \(e\left(\frac{17}{54}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{10}{27}\right)\) | \(e\left(\frac{5}{27}\right)\) | \(e\left(\frac{1}{54}\right)\) | \(e\left(\frac{1}{27}\right)\) |
\(\chi_{1296}(29,\cdot)\) | 1296.bu | 108 | yes | \(-1\) | \(1\) | \(e\left(\frac{55}{108}\right)\) | \(e\left(\frac{25}{54}\right)\) | \(e\left(\frac{71}{108}\right)\) | \(e\left(\frac{79}{108}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{1}{27}\right)\) | \(e\left(\frac{1}{54}\right)\) | \(e\left(\frac{65}{108}\right)\) | \(e\left(\frac{19}{27}\right)\) |
\(\chi_{1296}(31,\cdot)\) | 1296.bm | 54 | no | \(-1\) | \(1\) | \(e\left(\frac{14}{27}\right)\) | \(e\left(\frac{23}{54}\right)\) | \(e\left(\frac{17}{54}\right)\) | \(e\left(\frac{26}{27}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{31}{54}\right)\) | \(e\left(\frac{1}{27}\right)\) | \(e\left(\frac{19}{27}\right)\) | \(e\left(\frac{49}{54}\right)\) |
\(\chi_{1296}(35,\cdot)\) | 1296.bk | 36 | no | \(1\) | \(1\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) |
\(\chi_{1296}(37,\cdot)\) | 1296.bh | 36 | no | \(1\) | \(1\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{5}{9}\right)\) |
\(\chi_{1296}(41,\cdot)\) | 1296.bl | 54 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{27}\right)\) | \(e\left(\frac{19}{27}\right)\) | \(e\left(\frac{7}{27}\right)\) | \(e\left(\frac{19}{54}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{43}{54}\right)\) | \(e\left(\frac{4}{27}\right)\) | \(e\left(\frac{22}{27}\right)\) | \(e\left(\frac{17}{27}\right)\) |
\(\chi_{1296}(43,\cdot)\) | 1296.bt | 108 | yes | \(-1\) | \(1\) | \(e\left(\frac{67}{108}\right)\) | \(e\left(\frac{14}{27}\right)\) | \(e\left(\frac{5}{108}\right)\) | \(e\left(\frac{1}{108}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{13}{27}\right)\) | \(e\left(\frac{13}{54}\right)\) | \(e\left(\frac{89}{108}\right)\) | \(e\left(\frac{35}{54}\right)\) |
\(\chi_{1296}(47,\cdot)\) | 1296.bq | 54 | no | \(1\) | \(1\) | \(e\left(\frac{53}{54}\right)\) | \(e\left(\frac{31}{54}\right)\) | \(e\left(\frac{5}{27}\right)\) | \(e\left(\frac{1}{27}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{25}{27}\right)\) | \(e\left(\frac{26}{27}\right)\) | \(e\left(\frac{43}{54}\right)\) | \(e\left(\frac{5}{54}\right)\) |
\(\chi_{1296}(49,\cdot)\) | 1296.bg | 27 | no | \(1\) | \(1\) | \(e\left(\frac{17}{27}\right)\) | \(e\left(\frac{13}{27}\right)\) | \(e\left(\frac{19}{27}\right)\) | \(e\left(\frac{20}{27}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{14}{27}\right)\) | \(e\left(\frac{7}{27}\right)\) | \(e\left(\frac{25}{27}\right)\) | \(e\left(\frac{23}{27}\right)\) |
\(\chi_{1296}(53,\cdot)\) | 1296.x | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-1\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{1296}(55,\cdot)\) | 1296.t | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{1296}(59,\cdot)\) | 1296.bs | 108 | yes | \(1\) | \(1\) | \(e\left(\frac{77}{108}\right)\) | \(e\left(\frac{4}{27}\right)\) | \(e\left(\frac{67}{108}\right)\) | \(e\left(\frac{89}{108}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{19}{54}\right)\) | \(e\left(\frac{23}{54}\right)\) | \(e\left(\frac{91}{108}\right)\) | \(e\left(\frac{37}{54}\right)\) |
\(\chi_{1296}(61,\cdot)\) | 1296.bv | 108 | yes | \(1\) | \(1\) | \(e\left(\frac{97}{108}\right)\) | \(e\left(\frac{49}{54}\right)\) | \(e\left(\frac{29}{108}\right)\) | \(e\left(\frac{103}{108}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{5}{54}\right)\) | \(e\left(\frac{43}{54}\right)\) | \(e\left(\frac{95}{108}\right)\) | \(e\left(\frac{7}{27}\right)\) |
\(\chi_{1296}(65,\cdot)\) | 1296.bo | 54 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{54}\right)\) | \(e\left(\frac{5}{27}\right)\) | \(e\left(\frac{25}{54}\right)\) | \(e\left(\frac{16}{27}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{17}{54}\right)\) | \(e\left(\frac{11}{27}\right)\) | \(e\left(\frac{13}{54}\right)\) | \(e\left(\frac{13}{27}\right)\) |
\(\chi_{1296}(67,\cdot)\) | 1296.bt | 108 | yes | \(-1\) | \(1\) | \(e\left(\frac{53}{108}\right)\) | \(e\left(\frac{1}{27}\right)\) | \(e\left(\frac{91}{108}\right)\) | \(e\left(\frac{83}{108}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{26}{27}\right)\) | \(e\left(\frac{53}{54}\right)\) | \(e\left(\frac{43}{108}\right)\) | \(e\left(\frac{43}{54}\right)\) |
\(\chi_{1296}(71,\cdot)\) | 1296.bd | 18 | no | \(1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{1296}(73,\cdot)\) | 1296.bb | 18 | no | \(1\) | \(1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{1296}(77,\cdot)\) | 1296.bu | 108 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{108}\right)\) | \(e\left(\frac{5}{54}\right)\) | \(e\left(\frac{79}{108}\right)\) | \(e\left(\frac{59}{108}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{11}{27}\right)\) | \(e\left(\frac{11}{54}\right)\) | \(e\left(\frac{13}{108}\right)\) | \(e\left(\frac{20}{27}\right)\) |
\(\chi_{1296}(79,\cdot)\) | 1296.bm | 54 | no | \(-1\) | \(1\) | \(e\left(\frac{25}{27}\right)\) | \(e\left(\frac{43}{54}\right)\) | \(e\left(\frac{13}{54}\right)\) | \(e\left(\frac{4}{27}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{11}{54}\right)\) | \(e\left(\frac{23}{27}\right)\) | \(e\left(\frac{5}{27}\right)\) | \(e\left(\frac{47}{54}\right)\) |
\(\chi_{1296}(83,\cdot)\) | 1296.bs | 108 | yes | \(1\) | \(1\) | \(e\left(\frac{19}{108}\right)\) | \(e\left(\frac{8}{27}\right)\) | \(e\left(\frac{53}{108}\right)\) | \(e\left(\frac{43}{108}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{11}{54}\right)\) | \(e\left(\frac{19}{54}\right)\) | \(e\left(\frac{101}{108}\right)\) | \(e\left(\frac{47}{54}\right)\) |
\(\chi_{1296}(85,\cdot)\) | 1296.bv | 108 | yes | \(1\) | \(1\) | \(e\left(\frac{11}{108}\right)\) | \(e\left(\frac{5}{54}\right)\) | \(e\left(\frac{79}{108}\right)\) | \(e\left(\frac{5}{108}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{49}{54}\right)\) | \(e\left(\frac{11}{54}\right)\) | \(e\left(\frac{13}{108}\right)\) | \(e\left(\frac{20}{27}\right)\) |
\(\chi_{1296}(89,\cdot)\) | 1296.bf | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{1296}(91,\cdot)\) | 1296.bi | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) |
\(\chi_{1296}(95,\cdot)\) | 1296.bq | 54 | no | \(1\) | \(1\) | \(e\left(\frac{13}{54}\right)\) | \(e\left(\frac{29}{54}\right)\) | \(e\left(\frac{16}{27}\right)\) | \(e\left(\frac{14}{27}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{26}{27}\right)\) | \(e\left(\frac{13}{27}\right)\) | \(e\left(\frac{35}{54}\right)\) | \(e\left(\frac{43}{54}\right)\) |