from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1300, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([30,24,5]))
pari: [g,chi] = znchar(Mod(431,1300))
Basic properties
Modulus: | \(1300\) | |
Conductor: | \(1300\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(60\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1300.cq
\(\chi_{1300}(11,\cdot)\) \(\chi_{1300}(71,\cdot)\) \(\chi_{1300}(111,\cdot)\) \(\chi_{1300}(171,\cdot)\) \(\chi_{1300}(271,\cdot)\) \(\chi_{1300}(331,\cdot)\) \(\chi_{1300}(371,\cdot)\) \(\chi_{1300}(431,\cdot)\) \(\chi_{1300}(531,\cdot)\) \(\chi_{1300}(591,\cdot)\) \(\chi_{1300}(631,\cdot)\) \(\chi_{1300}(691,\cdot)\) \(\chi_{1300}(791,\cdot)\) \(\chi_{1300}(891,\cdot)\) \(\chi_{1300}(1111,\cdot)\) \(\chi_{1300}(1211,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{60})\) |
Fixed field: | Number field defined by a degree 60 polynomial |
Values on generators
\((651,677,301)\) → \((-1,e\left(\frac{2}{5}\right),e\left(\frac{1}{12}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 1300 }(431, a) \) | \(1\) | \(1\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{2}{15}\right)\) |
sage: chi.jacobi_sum(n)