sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1312, base_ring=CyclotomicField(40))
M = H._module
chi = DirichletCharacter(H, M([20,35,37]))
pari:[g,chi] = znchar(Mod(179,1312))
Modulus: | 1312 | |
Conductor: | 1312 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 40 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1312(67,⋅)
χ1312(99,⋅)
χ1312(147,⋅)
χ1312(171,⋅)
χ1312(179,⋅)
χ1312(235,⋅)
χ1312(315,⋅)
χ1312(587,⋅)
χ1312(667,⋅)
χ1312(675,⋅)
χ1312(691,⋅)
χ1312(731,⋅)
χ1312(867,⋅)
χ1312(883,⋅)
χ1312(955,⋅)
χ1312(1259,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(575,165,129) → (−1,e(87),e(4037))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 |
χ1312(179,a) |
1 | 1 | 1 | e(409) | e(4013) | 1 | e(2013) | e(54) | e(409) | e(401) | e(2019) | e(4013) |
sage:chi.jacobi_sum(n)