sage: H = DirichletGroup(1386)
pari: g = idealstar(,1386,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 360 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{6}\times C_{30}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{1386}(155,\cdot)$, $\chi_{1386}(199,\cdot)$, $\chi_{1386}(1135,\cdot)$ |
First 32 of 360 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(5\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1386}(1,\cdot)\) | 1386.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{1386}(5,\cdot)\) | 1386.cs | 30 | no | \(1\) | \(1\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) |
\(\chi_{1386}(13,\cdot)\) | 1386.cj | 30 | no | \(1\) | \(1\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{7}{15}\right)\) |
\(\chi_{1386}(17,\cdot)\) | 1386.cp | 30 | no | \(-1\) | \(1\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{7}{10}\right)\) |
\(\chi_{1386}(19,\cdot)\) | 1386.ce | 30 | no | \(1\) | \(1\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) |
\(\chi_{1386}(23,\cdot)\) | 1386.be | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{1386}(25,\cdot)\) | 1386.bz | 15 | no | \(1\) | \(1\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) |
\(\chi_{1386}(29,\cdot)\) | 1386.cf | 30 | no | \(1\) | \(1\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{14}{15}\right)\) |
\(\chi_{1386}(31,\cdot)\) | 1386.cy | 30 | no | \(-1\) | \(1\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(1\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{29}{30}\right)\) |
\(\chi_{1386}(37,\cdot)\) | 1386.bx | 15 | no | \(1\) | \(1\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{3}{5}\right)\) |
\(\chi_{1386}(41,\cdot)\) | 1386.cv | 30 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{17}{30}\right)\) |
\(\chi_{1386}(43,\cdot)\) | 1386.v | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{1386}(47,\cdot)\) | 1386.cb | 30 | no | \(1\) | \(1\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(-1\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) |
\(\chi_{1386}(53,\cdot)\) | 1386.cd | 30 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{3}{10}\right)\) |
\(\chi_{1386}(59,\cdot)\) | 1386.cb | 30 | no | \(1\) | \(1\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(-1\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{4}{15}\right)\) |
\(\chi_{1386}(61,\cdot)\) | 1386.db | 30 | no | \(1\) | \(1\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(1\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) |
\(\chi_{1386}(65,\cdot)\) | 1386.p | 6 | no | \(1\) | \(1\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{1386}(67,\cdot)\) | 1386.l | 3 | no | \(1\) | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{1386}(71,\cdot)\) | 1386.bt | 10 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(-1\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) |
\(\chi_{1386}(73,\cdot)\) | 1386.ce | 30 | no | \(1\) | \(1\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{3}{5}\right)\) |
\(\chi_{1386}(79,\cdot)\) | 1386.ca | 30 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(1\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{19}{30}\right)\) |
\(\chi_{1386}(83,\cdot)\) | 1386.cv | 30 | no | \(-1\) | \(1\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{30}\right)\) |
\(\chi_{1386}(85,\cdot)\) | 1386.ct | 30 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{17}{30}\right)\) |
\(\chi_{1386}(89,\cdot)\) | 1386.r | 6 | no | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) |
\(\chi_{1386}(95,\cdot)\) | 1386.cz | 30 | no | \(1\) | \(1\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(-1\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{4}{15}\right)\) |
\(\chi_{1386}(97,\cdot)\) | 1386.ci | 30 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{19}{30}\right)\) |
\(\chi_{1386}(101,\cdot)\) | 1386.cu | 30 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{19}{30}\right)\) |
\(\chi_{1386}(103,\cdot)\) | 1386.cg | 30 | no | \(-1\) | \(1\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{23}{30}\right)\) |
\(\chi_{1386}(107,\cdot)\) | 1386.co | 30 | no | \(1\) | \(1\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{2}{5}\right)\) |
\(\chi_{1386}(109,\cdot)\) | 1386.s | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) |
\(\chi_{1386}(113,\cdot)\) | 1386.cm | 30 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{17}{30}\right)\) |
\(\chi_{1386}(115,\cdot)\) | 1386.cg | 30 | no | \(-1\) | \(1\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{1}{30}\right)\) |