Properties

Modulus $148$
Structure \(C_{2}\times C_{36}\)
Order $72$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(148)
 
pari: g = idealstar(,148,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 72
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{36}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{148}(75,\cdot)$, $\chi_{148}(113,\cdot)$

First 32 of 72 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(21\)
\(\chi_{148}(1,\cdot)\) 148.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{148}(3,\cdot)\) 148.o 18 yes \(-1\) \(1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{148}(5,\cdot)\) 148.r 36 no \(-1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{148}(7,\cdot)\) 148.p 18 yes \(-1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{148}(9,\cdot)\) 148.k 9 no \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{148}(11,\cdot)\) 148.j 6 yes \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{148}(13,\cdot)\) 148.r 36 no \(-1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{148}(15,\cdot)\) 148.q 36 yes \(1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{148}(17,\cdot)\) 148.r 36 no \(-1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{148}(19,\cdot)\) 148.q 36 yes \(1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{148}(21,\cdot)\) 148.n 18 no \(1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{148}(23,\cdot)\) 148.l 12 yes \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{148}(25,\cdot)\) 148.n 18 no \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{148}(27,\cdot)\) 148.j 6 yes \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{148}(29,\cdot)\) 148.m 12 no \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{148}(31,\cdot)\) 148.g 4 yes \(1\) \(1\) \(1\) \(-i\) \(-1\) \(1\) \(1\) \(-i\) \(-i\) \(-i\) \(i\) \(-1\)
\(\chi_{148}(33,\cdot)\) 148.k 9 no \(1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{148}(35,\cdot)\) 148.q 36 yes \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{148}(39,\cdot)\) 148.q 36 yes \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{148}(41,\cdot)\) 148.n 18 no \(1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{148}(43,\cdot)\) 148.g 4 yes \(1\) \(1\) \(1\) \(i\) \(-1\) \(1\) \(1\) \(i\) \(i\) \(i\) \(-i\) \(-1\)
\(\chi_{148}(45,\cdot)\) 148.m 12 no \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{148}(47,\cdot)\) 148.i 6 yes \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{148}(49,\cdot)\) 148.k 9 no \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{148}(51,\cdot)\) 148.l 12 yes \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{148}(53,\cdot)\) 148.k 9 no \(1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{148}(55,\cdot)\) 148.q 36 yes \(1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{148}(57,\cdot)\) 148.r 36 no \(-1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{148}(59,\cdot)\) 148.q 36 yes \(1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{148}(61,\cdot)\) 148.r 36 no \(-1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{148}(63,\cdot)\) 148.i 6 yes \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{148}(65,\cdot)\) 148.n 18 no \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\)
Click here to search among the remaining 40 characters.