Properties

Label 148.83
Modulus 148148
Conductor 148148
Order 1818
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(148, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,8]))
 
pari: [g,chi] = znchar(Mod(83,148))
 

Basic properties

Modulus: 148148
Conductor: 148148
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 148.p

χ148(7,)\chi_{148}(7,\cdot) χ148(71,)\chi_{148}(71,\cdot) χ148(83,)\chi_{148}(83,\cdot) χ148(107,)\chi_{148}(107,\cdot) χ148(123,)\chi_{148}(123,\cdot) χ148(127,)\chi_{148}(127,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: 18.0.3234204723240544858872018632704.1

Values on generators

(75,113)(75,113)(1,e(49))(-1,e\left(\frac{4}{9}\right))

First values

aa 1-11133557799111113131515171719192121
χ148(83,a) \chi_{ 148 }(83, a) 1-111e(118)e\left(\frac{1}{18}\right)e(29)e\left(\frac{2}{9}\right)e(1318)e\left(\frac{13}{18}\right)e(19)e\left(\frac{1}{9}\right)e(56)e\left(\frac{5}{6}\right)e(89)e\left(\frac{8}{9}\right)e(518)e\left(\frac{5}{18}\right)e(19)e\left(\frac{1}{9}\right)e(118)e\left(\frac{1}{18}\right)e(79)e\left(\frac{7}{9}\right)
sage: chi.jacobi_sum(n)
 
χ148(83,a)   \chi_{ 148 }(83,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ148(83,))   \tau_{ a }( \chi_{ 148 }(83,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ148(83,),χ148(n,))   J(\chi_{ 148 }(83,·),\chi_{ 148 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ148(83,))  K(a,b,\chi_{ 148 }(83,·)) \; at   a,b=\; a,b = e.g. 1,2