sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1480, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([0,18,27,7]))
pari:[g,chi] = znchar(Mod(1053,1480))
Modulus: | 1480 | |
Conductor: | 1480 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 36 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1480(13,⋅)
χ1480(93,⋅)
χ1480(133,⋅)
χ1480(237,⋅)
χ1480(277,⋅)
χ1480(357,⋅)
χ1480(557,⋅)
χ1480(797,⋅)
χ1480(893,⋅)
χ1480(957,⋅)
χ1480(1053,⋅)
χ1480(1293,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1111,741,297,1001) → (1,−1,−i,e(367))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 17 | 19 | 21 | 23 | 27 |
χ1480(1053,a) |
1 | 1 | e(3629) | e(3635) | e(1811) | e(31) | e(98) | e(91) | e(3629) | e(97) | e(61) | e(125) |
sage:chi.jacobi_sum(n)