Properties

Label 1512.517
Modulus $1512$
Conductor $1512$
Order $18$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1512, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,9,2,9]))
 
pari: [g,chi] = znchar(Mod(517,1512))
 

Basic properties

Modulus: \(1512\)
Conductor: \(1512\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1512.ef

\(\chi_{1512}(13,\cdot)\) \(\chi_{1512}(349,\cdot)\) \(\chi_{1512}(517,\cdot)\) \(\chi_{1512}(853,\cdot)\) \(\chi_{1512}(1021,\cdot)\) \(\chi_{1512}(1357,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((1135,757,785,1081)\) → \((1,-1,e\left(\frac{1}{9}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)
\( \chi_{ 1512 }(517, a) \) \(-1\)\(1\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{1}{6}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1512 }(517,a) \;\) at \(\;a = \) e.g. 2