from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1617, base_ring=CyclotomicField(70))
M = H._module
chi = DirichletCharacter(H, M([35,5,63]))
pari: [g,chi] = znchar(Mod(1007,1617))
χ1617(41,⋅)
χ1617(62,⋅)
χ1617(83,⋅)
χ1617(167,⋅)
χ1617(272,⋅)
χ1617(314,⋅)
χ1617(398,⋅)
χ1617(503,⋅)
χ1617(524,⋅)
χ1617(545,⋅)
χ1617(629,⋅)
χ1617(755,⋅)
χ1617(776,⋅)
χ1617(860,⋅)
χ1617(965,⋅)
χ1617(986,⋅)
χ1617(1007,⋅)
χ1617(1091,⋅)
χ1617(1196,⋅)
χ1617(1217,⋅)
χ1617(1238,⋅)
χ1617(1427,⋅)
χ1617(1448,⋅)
χ1617(1553,⋅)
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1079,199,442) → (−1,e(141),e(109))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 13 | 16 | 17 | 19 | 20 |
χ1617(1007,a) |
−1 | 1 | e(359) | e(3518) | e(356) | e(3527) | e(73) | e(359) | e(351) | e(7027) | e(51) | e(3524) |