sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1700, base_ring=CyclotomicField(40))
M = H._module
chi = DirichletCharacter(H, M([20,12,35]))
pari:[g,chi] = znchar(Mod(1039,1700))
Modulus: | 1700 | |
Conductor: | 1700 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 40 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1700(19,⋅)
χ1700(59,⋅)
χ1700(179,⋅)
χ1700(219,⋅)
χ1700(359,⋅)
χ1700(519,⋅)
χ1700(559,⋅)
χ1700(739,⋅)
χ1700(859,⋅)
χ1700(1039,⋅)
χ1700(1079,⋅)
χ1700(1239,⋅)
χ1700(1379,⋅)
χ1700(1419,⋅)
χ1700(1539,⋅)
χ1700(1579,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(851,477,1601) → (−1,e(103),e(87))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 19 | 21 | 23 | 27 | 29 |
χ1700(1039,a) |
−1 | 1 | e(4019) | e(85) | e(2019) | e(4017) | e(51) | e(203) | e(101) | e(4037) | e(4017) | e(4039) |
sage:chi.jacobi_sum(n)