Properties

Label 1700.1079
Modulus $1700$
Conductor $1700$
Order $40$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1700, base_ring=CyclotomicField(40))
 
M = H._module
 
chi = DirichletCharacter(H, M([20,4,25]))
 
pari: [g,chi] = znchar(Mod(1079,1700))
 

Basic properties

Modulus: \(1700\)
Conductor: \(1700\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(40\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1700.cf

\(\chi_{1700}(19,\cdot)\) \(\chi_{1700}(59,\cdot)\) \(\chi_{1700}(179,\cdot)\) \(\chi_{1700}(219,\cdot)\) \(\chi_{1700}(359,\cdot)\) \(\chi_{1700}(519,\cdot)\) \(\chi_{1700}(559,\cdot)\) \(\chi_{1700}(739,\cdot)\) \(\chi_{1700}(859,\cdot)\) \(\chi_{1700}(1039,\cdot)\) \(\chi_{1700}(1079,\cdot)\) \(\chi_{1700}(1239,\cdot)\) \(\chi_{1700}(1379,\cdot)\) \(\chi_{1700}(1419,\cdot)\) \(\chi_{1700}(1539,\cdot)\) \(\chi_{1700}(1579,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{40})\)
Fixed field: 40.0.4333834970391607127648627101904836847739142552018165588378906250000000000000000000000000000000000000000.1

Values on generators

\((851,477,1601)\) → \((-1,e\left(\frac{1}{10}\right),e\left(\frac{5}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 1700 }(1079, a) \) \(-1\)\(1\)\(e\left(\frac{33}{40}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{19}{40}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{39}{40}\right)\)\(e\left(\frac{19}{40}\right)\)\(e\left(\frac{13}{40}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1700 }(1079,a) \;\) at \(\;a = \) e.g. 2