from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1700, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([10,16,5]))
pari: [g,chi] = znchar(Mod(1611,1700))
Basic properties
Modulus: | \(1700\) | |
Conductor: | \(1700\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(20\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1700.bw
\(\chi_{1700}(191,\cdot)\) \(\chi_{1700}(531,\cdot)\) \(\chi_{1700}(591,\cdot)\) \(\chi_{1700}(871,\cdot)\) \(\chi_{1700}(931,\cdot)\) \(\chi_{1700}(1211,\cdot)\) \(\chi_{1700}(1271,\cdot)\) \(\chi_{1700}(1611,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{20})\) |
Fixed field: | Number field defined by a degree 20 polynomial |
Values on generators
\((851,477,1601)\) → \((-1,e\left(\frac{4}{5}\right),i)\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 1700 }(1611, a) \) | \(-1\) | \(1\) | \(e\left(\frac{7}{20}\right)\) | \(i\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) |
sage: chi.jacobi_sum(n)