Properties

Label 1700.1611
Modulus $1700$
Conductor $1700$
Order $20$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1700, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,16,5]))
 
pari: [g,chi] = znchar(Mod(1611,1700))
 

Basic properties

Modulus: \(1700\)
Conductor: \(1700\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1700.bw

\(\chi_{1700}(191,\cdot)\) \(\chi_{1700}(531,\cdot)\) \(\chi_{1700}(591,\cdot)\) \(\chi_{1700}(871,\cdot)\) \(\chi_{1700}(931,\cdot)\) \(\chi_{1700}(1211,\cdot)\) \(\chi_{1700}(1271,\cdot)\) \(\chi_{1700}(1611,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

\((851,477,1601)\) → \((-1,e\left(\frac{4}{5}\right),i)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 1700 }(1611, a) \) \(-1\)\(1\)\(e\left(\frac{7}{20}\right)\)\(i\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{17}{20}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1700 }(1611,a) \;\) at \(\;a = \) e.g. 2