Properties

Label 1700.1623
Modulus $1700$
Conductor $1700$
Order $40$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1700, base_ring=CyclotomicField(40))
 
M = H._module
 
chi = DirichletCharacter(H, M([20,22,25]))
 
pari: [g,chi] = znchar(Mod(1623,1700))
 

Basic properties

Modulus: \(1700\)
Conductor: \(1700\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(40\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1700.ci

\(\chi_{1700}(87,\cdot)\) \(\chi_{1700}(263,\cdot)\) \(\chi_{1700}(287,\cdot)\) \(\chi_{1700}(383,\cdot)\) \(\chi_{1700}(427,\cdot)\) \(\chi_{1700}(603,\cdot)\) \(\chi_{1700}(627,\cdot)\) \(\chi_{1700}(723,\cdot)\) \(\chi_{1700}(767,\cdot)\) \(\chi_{1700}(967,\cdot)\) \(\chi_{1700}(1063,\cdot)\) \(\chi_{1700}(1283,\cdot)\) \(\chi_{1700}(1403,\cdot)\) \(\chi_{1700}(1447,\cdot)\) \(\chi_{1700}(1623,\cdot)\) \(\chi_{1700}(1647,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{40})\)
Fixed field: 40.40.108345874259790178191215677547620921193478563800454139709472656250000000000000000000000000000000000000000.1

Values on generators

\((851,477,1601)\) → \((-1,e\left(\frac{11}{20}\right),e\left(\frac{5}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 1700 }(1623, a) \) \(1\)\(1\)\(e\left(\frac{39}{40}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{27}{40}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{37}{40}\right)\)\(e\left(\frac{37}{40}\right)\)\(e\left(\frac{9}{40}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1700 }(1623,a) \;\) at \(\;a = \) e.g. 2