from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1700, base_ring=CyclotomicField(40))
M = H._module
chi = DirichletCharacter(H, M([20,22,25]))
pari: [g,chi] = znchar(Mod(1623,1700))
Basic properties
Modulus: | \(1700\) | |
Conductor: | \(1700\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(40\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1700.ci
\(\chi_{1700}(87,\cdot)\) \(\chi_{1700}(263,\cdot)\) \(\chi_{1700}(287,\cdot)\) \(\chi_{1700}(383,\cdot)\) \(\chi_{1700}(427,\cdot)\) \(\chi_{1700}(603,\cdot)\) \(\chi_{1700}(627,\cdot)\) \(\chi_{1700}(723,\cdot)\) \(\chi_{1700}(767,\cdot)\) \(\chi_{1700}(967,\cdot)\) \(\chi_{1700}(1063,\cdot)\) \(\chi_{1700}(1283,\cdot)\) \(\chi_{1700}(1403,\cdot)\) \(\chi_{1700}(1447,\cdot)\) \(\chi_{1700}(1623,\cdot)\) \(\chi_{1700}(1647,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{40})\) |
Fixed field: | 40.40.108345874259790178191215677547620921193478563800454139709472656250000000000000000000000000000000000000000.1 |
Values on generators
\((851,477,1601)\) → \((-1,e\left(\frac{11}{20}\right),e\left(\frac{5}{8}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 1700 }(1623, a) \) | \(1\) | \(1\) | \(e\left(\frac{39}{40}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{27}{40}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{9}{40}\right)\) |
sage: chi.jacobi_sum(n)