Properties

Modulus $1785$
Structure \(C_{2}\times C_{2}\times C_{4}\times C_{48}\)
Order $768$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(1785)
 
pari: g = idealstar(,1785,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 768
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{4}\times C_{48}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{1785}(596,\cdot)$, $\chi_{1785}(1072,\cdot)$, $\chi_{1785}(766,\cdot)$, $\chi_{1785}(1261,\cdot)$

First 32 of 768 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(2\) \(4\) \(8\) \(11\) \(13\) \(16\) \(19\) \(22\) \(23\) \(26\)
\(\chi_{1785}(1,\cdot)\) 1785.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{1785}(2,\cdot)\) 1785.ei 24 yes \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{23}{24}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{1785}(4,\cdot)\) 1785.cv 12 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{1785}(8,\cdot)\) 1785.cq 8 no \(1\) \(1\) \(1\) \(1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(-i\) \(1\) \(i\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(-i\)
\(\chi_{1785}(11,\cdot)\) 1785.ff 48 no \(1\) \(1\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{11}{48}\right)\) \(-i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{17}{24}\right)\)
\(\chi_{1785}(13,\cdot)\) 1785.bc 4 no \(1\) \(1\) \(i\) \(-1\) \(-i\) \(-i\) \(-i\) \(1\) \(-1\) \(1\) \(1\) \(1\)
\(\chi_{1785}(16,\cdot)\) 1785.bu 6 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{1785}(19,\cdot)\) 1785.ep 24 no \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{11}{24}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{1785}(22,\cdot)\) 1785.ee 16 no \(1\) \(1\) \(e\left(\frac{5}{8}\right)\) \(i\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{3}{16}\right)\) \(1\) \(-1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{1785}(23,\cdot)\) 1785.fk 48 yes \(-1\) \(1\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{19}{48}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{1}{24}\right)\)
\(\chi_{1785}(26,\cdot)\) 1785.es 24 no \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(-i\) \(e\left(\frac{17}{24}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{1785}(29,\cdot)\) 1785.dy 16 no \(1\) \(1\) \(e\left(\frac{3}{8}\right)\) \(-i\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{16}\right)\) \(-i\) \(-1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{1785}(31,\cdot)\) 1785.fi 48 no \(1\) \(1\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{29}{48}\right)\) \(-i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{23}{24}\right)\)
\(\chi_{1785}(32,\cdot)\) 1785.ei 24 yes \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{19}{24}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{1785}(37,\cdot)\) 1785.fn 48 no \(1\) \(1\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{37}{48}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{19}{24}\right)\)
\(\chi_{1785}(38,\cdot)\) 1785.dg 12 yes \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{5}{12}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{1785}(41,\cdot)\) 1785.dw 16 no \(-1\) \(1\) \(e\left(\frac{1}{8}\right)\) \(i\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{16}\right)\) \(i\) \(-1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{1785}(43,\cdot)\) 1785.cf 8 no \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(e\left(\frac{7}{8}\right)\) \(-i\) \(1\) \(i\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(i\)
\(\chi_{1785}(44,\cdot)\) 1785.fh 48 yes \(1\) \(1\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{48}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{13}{24}\right)\)
\(\chi_{1785}(46,\cdot)\) 1785.fe 48 no \(-1\) \(1\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{17}{48}\right)\) \(i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{23}{24}\right)\)
\(\chi_{1785}(47,\cdot)\) 1785.dg 12 yes \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(-i\) \(e\left(\frac{7}{12}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{1785}(52,\cdot)\) 1785.cz 12 no \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-i\) \(e\left(\frac{2}{3}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{1785}(53,\cdot)\) 1785.ex 24 yes \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{7}{24}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{1785}(58,\cdot)\) 1785.fn 48 no \(1\) \(1\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{48}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{1}{24}\right)\)
\(\chi_{1785}(59,\cdot)\) 1785.en 24 yes \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{13}{24}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{1785}(61,\cdot)\) 1785.fi 48 no \(1\) \(1\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{31}{48}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{13}{24}\right)\)
\(\chi_{1785}(62,\cdot)\) 1785.eg 16 yes \(1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(-i\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{9}{16}\right)\) \(1\) \(-1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{1785}(64,\cdot)\) 1785.bl 4 no \(1\) \(1\) \(1\) \(1\) \(1\) \(-i\) \(-1\) \(1\) \(-1\) \(-i\) \(i\) \(-1\)
\(\chi_{1785}(67,\cdot)\) 1785.dm 12 no \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-i\) \(e\left(\frac{1}{6}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{1785}(71,\cdot)\) 1785.ea 16 no \(1\) \(1\) \(e\left(\frac{3}{8}\right)\) \(-i\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{15}{16}\right)\) \(i\) \(-1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{1785}(73,\cdot)\) 1785.fm 48 no \(-1\) \(1\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{41}{48}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{11}{24}\right)\)
\(\chi_{1785}(74,\cdot)\) 1785.fh 48 yes \(1\) \(1\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{35}{48}\right)\) \(i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{17}{24}\right)\)
Click here to search among the remaining 736 characters.