sage: H = DirichletGroup(1785)
pari: g = idealstar(,1785,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 768 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{4}\times C_{48}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{1785}(596,\cdot)$, $\chi_{1785}(1072,\cdot)$, $\chi_{1785}(766,\cdot)$, $\chi_{1785}(1261,\cdot)$ |
First 32 of 768 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(19\) | \(22\) | \(23\) | \(26\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1785}(1,\cdot)\) | 1785.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{1785}(2,\cdot)\) | 1785.ei | 24 | yes | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{23}{24}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{1785}(4,\cdot)\) | 1785.cv | 12 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{1785}(8,\cdot)\) | 1785.cq | 8 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) | \(1\) | \(i\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(-i\) |
\(\chi_{1785}(11,\cdot)\) | 1785.ff | 48 | no | \(1\) | \(1\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{17}{24}\right)\) |
\(\chi_{1785}(13,\cdot)\) | 1785.bc | 4 | no | \(1\) | \(1\) | \(i\) | \(-1\) | \(-i\) | \(-i\) | \(-i\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{1785}(16,\cdot)\) | 1785.bu | 6 | no | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{1785}(19,\cdot)\) | 1785.ep | 24 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{11}{24}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{1785}(22,\cdot)\) | 1785.ee | 16 | no | \(1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(i\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{1785}(23,\cdot)\) | 1785.fk | 48 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{1}{24}\right)\) |
\(\chi_{1785}(26,\cdot)\) | 1785.es | 24 | no | \(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{17}{24}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{1785}(29,\cdot)\) | 1785.dy | 16 | no | \(1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(-i\) | \(-1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) |
\(\chi_{1785}(31,\cdot)\) | 1785.fi | 48 | no | \(1\) | \(1\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{23}{24}\right)\) |
\(\chi_{1785}(32,\cdot)\) | 1785.ei | 24 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{19}{24}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{1785}(37,\cdot)\) | 1785.fn | 48 | no | \(1\) | \(1\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{19}{24}\right)\) |
\(\chi_{1785}(38,\cdot)\) | 1785.dg | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{1785}(41,\cdot)\) | 1785.dw | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{1785}(43,\cdot)\) | 1785.cf | 8 | no | \(-1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) | \(1\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(i\) |
\(\chi_{1785}(44,\cdot)\) | 1785.fh | 48 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{13}{24}\right)\) |
\(\chi_{1785}(46,\cdot)\) | 1785.fe | 48 | no | \(-1\) | \(1\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{23}{24}\right)\) |
\(\chi_{1785}(47,\cdot)\) | 1785.dg | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{1785}(52,\cdot)\) | 1785.cz | 12 | no | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{1785}(53,\cdot)\) | 1785.ex | 24 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{7}{24}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{1785}(58,\cdot)\) | 1785.fn | 48 | no | \(1\) | \(1\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{1}{24}\right)\) |
\(\chi_{1785}(59,\cdot)\) | 1785.en | 24 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(e\left(\frac{13}{24}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{1785}(61,\cdot)\) | 1785.fi | 48 | no | \(1\) | \(1\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{13}{24}\right)\) |
\(\chi_{1785}(62,\cdot)\) | 1785.eg | 16 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{1785}(64,\cdot)\) | 1785.bl | 4 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(-i\) | \(-1\) | \(1\) | \(-1\) | \(-i\) | \(i\) | \(-1\) |
\(\chi_{1785}(67,\cdot)\) | 1785.dm | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{1785}(71,\cdot)\) | 1785.ea | 16 | no | \(1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{1785}(73,\cdot)\) | 1785.fm | 48 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{11}{24}\right)\) |
\(\chi_{1785}(74,\cdot)\) | 1785.fh | 48 | yes | \(1\) | \(1\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{17}{24}\right)\) |