sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1800, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([15,15,5,27]))
pari:[g,chi] = znchar(Mod(1019,1800))
Modulus: | 1800 | |
Conductor: | 1800 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 30 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1800(59,⋅)
χ1800(419,⋅)
χ1800(659,⋅)
χ1800(779,⋅)
χ1800(1019,⋅)
χ1800(1139,⋅)
χ1800(1379,⋅)
χ1800(1739,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1351,901,1001,577) → (−1,−1,e(61),e(109))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ1800(1019,a) |
1 | 1 | e(32) | e(3017) | e(1514) | e(51) | e(51) | e(307) | e(157) | e(301) | e(53) | e(3013) |
sage:chi.jacobi_sum(n)