Properties

Label 1800.211
Modulus $1800$
Conductor $1800$
Order $30$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([15,15,10,24]))
 
pari: [g,chi] = znchar(Mod(211,1800))
 

Basic properties

Modulus: \(1800\)
Conductor: \(1800\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1800.dg

\(\chi_{1800}(211,\cdot)\) \(\chi_{1800}(331,\cdot)\) \(\chi_{1800}(571,\cdot)\) \(\chi_{1800}(691,\cdot)\) \(\chi_{1800}(931,\cdot)\) \(\chi_{1800}(1291,\cdot)\) \(\chi_{1800}(1411,\cdot)\) \(\chi_{1800}(1771,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

\((1351,901,1001,577)\) → \((-1,-1,e\left(\frac{1}{3}\right),e\left(\frac{4}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 1800 }(211, a) \) \(-1\)\(1\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{11}{30}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{29}{30}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{13}{15}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1800 }(211,a) \;\) at \(\;a = \) e.g. 2