Properties

Label 1805.512
Modulus $1805$
Conductor $1805$
Order $76$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1805, base_ring=CyclotomicField(76))
 
M = H._module
 
chi = DirichletCharacter(H, M([19,2]))
 
pari: [g,chi] = znchar(Mod(512,1805))
 

Basic properties

Modulus: \(1805\)
Conductor: \(1805\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(76\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1805.x

\(\chi_{1805}(18,\cdot)\) \(\chi_{1805}(37,\cdot)\) \(\chi_{1805}(113,\cdot)\) \(\chi_{1805}(132,\cdot)\) \(\chi_{1805}(208,\cdot)\) \(\chi_{1805}(227,\cdot)\) \(\chi_{1805}(303,\cdot)\) \(\chi_{1805}(322,\cdot)\) \(\chi_{1805}(398,\cdot)\) \(\chi_{1805}(417,\cdot)\) \(\chi_{1805}(493,\cdot)\) \(\chi_{1805}(512,\cdot)\) \(\chi_{1805}(588,\cdot)\) \(\chi_{1805}(607,\cdot)\) \(\chi_{1805}(683,\cdot)\) \(\chi_{1805}(702,\cdot)\) \(\chi_{1805}(778,\cdot)\) \(\chi_{1805}(797,\cdot)\) \(\chi_{1805}(873,\cdot)\) \(\chi_{1805}(892,\cdot)\) \(\chi_{1805}(968,\cdot)\) \(\chi_{1805}(987,\cdot)\) \(\chi_{1805}(1063,\cdot)\) \(\chi_{1805}(1158,\cdot)\) \(\chi_{1805}(1177,\cdot)\) \(\chi_{1805}(1253,\cdot)\) \(\chi_{1805}(1272,\cdot)\) \(\chi_{1805}(1348,\cdot)\) \(\chi_{1805}(1367,\cdot)\) \(\chi_{1805}(1462,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{76})$
Fixed field: Number field defined by a degree 76 polynomial

Values on generators

\((362,1446)\) → \((i,e\left(\frac{1}{38}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 1805 }(512, a) \) \(1\)\(1\)\(e\left(\frac{21}{76}\right)\)\(e\left(\frac{31}{76}\right)\)\(e\left(\frac{21}{38}\right)\)\(e\left(\frac{13}{19}\right)\)\(e\left(\frac{15}{76}\right)\)\(e\left(\frac{63}{76}\right)\)\(e\left(\frac{31}{38}\right)\)\(e\left(\frac{13}{19}\right)\)\(e\left(\frac{73}{76}\right)\)\(e\left(\frac{31}{76}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1805 }(512,a) \;\) at \(\;a = \) e.g. 2