sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1920, base_ring=CyclotomicField(32))
M = H._module
chi = DirichletCharacter(H, M([0,21,16,16]))
pari:[g,chi] = znchar(Mod(629,1920))
Modulus: | 1920 | |
Conductor: | 1920 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 32 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ1920(29,⋅)
χ1920(149,⋅)
χ1920(269,⋅)
χ1920(389,⋅)
χ1920(509,⋅)
χ1920(629,⋅)
χ1920(749,⋅)
χ1920(869,⋅)
χ1920(989,⋅)
χ1920(1109,⋅)
χ1920(1229,⋅)
χ1920(1349,⋅)
χ1920(1469,⋅)
χ1920(1589,⋅)
χ1920(1709,⋅)
χ1920(1829,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(511,901,641,1537) → (1,e(3221),−1,−1)
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ1920(629,a) |
−1 | 1 | e(161) | e(329) | e(3211) | e(83) | e(323) | e(163) | e(327) | i | e(3229) | e(163) |
sage:chi.jacobi_sum(n)