Properties

Label 1957.1085
Modulus 19571957
Conductor 19571957
Order 306306
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1957, base_ring=CyclotomicField(306))
 
M = H._module
 
chi = DirichletCharacter(H, M([17,186]))
 
pari: [g,chi] = znchar(Mod(1085,1957))
 

Basic properties

Modulus: 19571957
Conductor: 19571957
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 306306
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1957.ce

χ1957(2,)\chi_{1957}(2,\cdot) χ1957(15,)\chi_{1957}(15,\cdot) χ1957(32,)\chi_{1957}(32,\cdot) χ1957(41,)\chi_{1957}(41,\cdot) χ1957(59,)\chi_{1957}(59,\cdot) χ1957(60,)\chi_{1957}(60,\cdot) χ1957(91,)\chi_{1957}(91,\cdot) χ1957(97,)\chi_{1957}(97,\cdot) χ1957(110,)\chi_{1957}(110,\cdot) χ1957(128,)\chi_{1957}(128,\cdot) χ1957(231,)\chi_{1957}(231,\cdot) χ1957(238,)\chi_{1957}(238,\cdot) χ1957(261,)\chi_{1957}(261,\cdot) χ1957(298,)\chi_{1957}(298,\cdot) χ1957(325,)\chi_{1957}(325,\cdot) χ1957(337,)\chi_{1957}(337,\cdot) χ1957(364,)\chi_{1957}(364,\cdot) χ1957(440,)\chi_{1957}(440,\cdot) χ1957(450,)\chi_{1957}(450,\cdot) χ1957(504,)\chi_{1957}(504,\cdot) χ1957(534,)\chi_{1957}(534,\cdot) χ1957(547,)\chi_{1957}(547,\cdot) χ1957(656,)\chi_{1957}(656,\cdot) χ1957(667,)\chi_{1957}(667,\cdot) χ1957(686,)\chi_{1957}(686,\cdot) χ1957(716,)\chi_{1957}(716,\cdot) χ1957(754,)\chi_{1957}(754,\cdot) χ1957(762,)\chi_{1957}(762,\cdot) χ1957(773,)\chi_{1957}(773,\cdot) χ1957(781,)\chi_{1957}(781,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ153)\Q(\zeta_{153})
Fixed field: Number field defined by a degree 306 polynomial (not computed)

Values on generators

(1237,932)(1237,932)(e(118),e(3151))(e\left(\frac{1}{18}\right),e\left(\frac{31}{51}\right))

First values

aa 1-111223344556677889910101111
χ1957(1085,a) \chi_{ 1957 }(1085, a) 1-111e(245306)e\left(\frac{245}{306}\right)e(131306)e\left(\frac{131}{306}\right)e(92153)e\left(\frac{92}{153}\right)e(76153)e\left(\frac{76}{153}\right)e(35153)e\left(\frac{35}{153}\right)e(1317)e\left(\frac{13}{17}\right)e(41102)e\left(\frac{41}{102}\right)e(131153)e\left(\frac{131}{153}\right)e(91306)e\left(\frac{91}{306}\right)e(3851)e\left(\frac{38}{51}\right)
sage: chi.jacobi_sum(n)
 
χ1957(1085,a)   \chi_{ 1957 }(1085,a) \; at   a=\;a = e.g. 2