Properties

Label 197.46
Modulus 197197
Conductor 197197
Order 196196
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(196))
 
M = H._module
 
chi = DirichletCharacter(H, M([121]))
 
pari: [g,chi] = znchar(Mod(46,197))
 

Basic properties

Modulus: 197197
Conductor: 197197
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 196196
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 197.i

χ197(2,)\chi_{197}(2,\cdot) χ197(3,)\chi_{197}(3,\cdot) χ197(5,)\chi_{197}(5,\cdot) χ197(8,)\chi_{197}(8,\cdot) χ197(11,)\chi_{197}(11,\cdot) χ197(12,)\chi_{197}(12,\cdot) χ197(13,)\chi_{197}(13,\cdot) χ197(17,)\chi_{197}(17,\cdot) χ197(18,)\chi_{197}(18,\cdot) χ197(21,)\chi_{197}(21,\cdot) χ197(27,)\chi_{197}(27,\cdot) χ197(30,)\chi_{197}(30,\cdot) χ197(31,)\chi_{197}(31,\cdot) χ197(32,)\chi_{197}(32,\cdot) χ197(35,)\chi_{197}(35,\cdot) χ197(38,)\chi_{197}(38,\cdot) χ197(44,)\chi_{197}(44,\cdot) χ197(45,)\chi_{197}(45,\cdot) χ197(46,)\chi_{197}(46,\cdot) χ197(48,)\chi_{197}(48,\cdot) χ197(50,)\chi_{197}(50,\cdot) χ197(52,)\chi_{197}(52,\cdot) χ197(56,)\chi_{197}(56,\cdot) χ197(57,)\chi_{197}(57,\cdot) χ197(58,)\chi_{197}(58,\cdot) χ197(66,)\chi_{197}(66,\cdot) χ197(67,)\chi_{197}(67,\cdot) χ197(71,)\chi_{197}(71,\cdot) χ197(72,)\chi_{197}(72,\cdot) χ197(73,)\chi_{197}(73,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ196)\Q(\zeta_{196})
Fixed field: Number field defined by a degree 196 polynomial (not computed)

Values on generators

22e(121196)e\left(\frac{121}{196}\right)

First values

aa 1-111223344556677889910101111
χ197(46,a) \chi_{ 197 }(46, a) 1-111e(121196)e\left(\frac{121}{196}\right)e(145196)e\left(\frac{145}{196}\right)e(2398)e\left(\frac{23}{98}\right)e(185196)e\left(\frac{185}{196}\right)e(514)e\left(\frac{5}{14}\right)e(1398)e\left(\frac{13}{98}\right)e(167196)e\left(\frac{167}{196}\right)e(4798)e\left(\frac{47}{98}\right)e(5598)e\left(\frac{55}{98}\right)e(177196)e\left(\frac{177}{196}\right)
sage: chi.jacobi_sum(n)
 
χ197(46,a)   \chi_{ 197 }(46,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ197(46,))   \tau_{ a }( \chi_{ 197 }(46,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ197(46,),χ197(n,))   J(\chi_{ 197 }(46,·),\chi_{ 197 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ197(46,))  K(a,b,\chi_{ 197 }(46,·)) \; at   a,b=\; a,b = e.g. 1,2