Properties

Label 197.158
Modulus 197197
Conductor 197197
Order 4949
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(98))
 
M = H._module
 
chi = DirichletCharacter(H, M([54]))
 
pari: [g,chi] = znchar(Mod(158,197))
 

Basic properties

Modulus: 197197
Conductor: 197197
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 4949
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 197.g

χ197(16,)\chi_{197}(16,\cdot) χ197(23,)\chi_{197}(23,\cdot) χ197(24,)\chi_{197}(24,\cdot) χ197(28,)\chi_{197}(28,\cdot) χ197(29,)\chi_{197}(29,\cdot) χ197(34,)\chi_{197}(34,\cdot) χ197(37,)\chi_{197}(37,\cdot) χ197(40,)\chi_{197}(40,\cdot) χ197(42,)\chi_{197}(42,\cdot) χ197(49,)\chi_{197}(49,\cdot) χ197(51,)\chi_{197}(51,\cdot) χ197(53,)\chi_{197}(53,\cdot) χ197(54,)\chi_{197}(54,\cdot) χ197(59,)\chi_{197}(59,\cdot) χ197(60,)\chi_{197}(60,\cdot) χ197(61,)\chi_{197}(61,\cdot) χ197(63,)\chi_{197}(63,\cdot) χ197(70,)\chi_{197}(70,\cdot) χ197(76,)\chi_{197}(76,\cdot) χ197(81,)\chi_{197}(81,\cdot) χ197(85,)\chi_{197}(85,\cdot) χ197(88,)\chi_{197}(88,\cdot) χ197(90,)\chi_{197}(90,\cdot) χ197(100,)\chi_{197}(100,\cdot) χ197(101,)\chi_{197}(101,\cdot) χ197(105,)\chi_{197}(105,\cdot) χ197(132,)\chi_{197}(132,\cdot) χ197(133,)\chi_{197}(133,\cdot) χ197(135,)\chi_{197}(135,\cdot) χ197(142,)\chi_{197}(142,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ49)\Q(\zeta_{49})
Fixed field: Number field defined by a degree 49 polynomial

Values on generators

22e(2749)e\left(\frac{27}{49}\right)

First values

aa 1-111223344556677889910101111
χ197(158,a) \chi_{ 197 }(158, a) 1111e(2749)e\left(\frac{27}{49}\right)e(3649)e\left(\frac{36}{49}\right)e(549)e\left(\frac{5}{49}\right)e(249)e\left(\frac{2}{49}\right)e(27)e\left(\frac{2}{7}\right)e(2249)e\left(\frac{22}{49}\right)e(3249)e\left(\frac{32}{49}\right)e(2349)e\left(\frac{23}{49}\right)e(2949)e\left(\frac{29}{49}\right)e(4849)e\left(\frac{48}{49}\right)
sage: chi.jacobi_sum(n)
 
χ197(158,a)   \chi_{ 197 }(158,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ197(158,))   \tau_{ a }( \chi_{ 197 }(158,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ197(158,),χ197(n,))   J(\chi_{ 197 }(158,·),\chi_{ 197 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ197(158,))  K(a,b,\chi_{ 197 }(158,·)) \; at   a,b=\; a,b = e.g. 1,2