from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2128, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([0,3,10,6]))
pari: [g,chi] = znchar(Mod(341,2128))
Basic properties
Modulus: | \(2128\) | |
Conductor: | \(2128\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(12\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2128.dy
\(\chi_{2128}(341,\cdot)\) \(\chi_{2128}(493,\cdot)\) \(\chi_{2128}(1405,\cdot)\) \(\chi_{2128}(1557,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{12})\) |
Fixed field: | 12.12.114154191573300680692072448.1 |
Values on generators
\((799,533,913,1009)\) → \((1,i,e\left(\frac{5}{6}\right),-1)\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |
\( \chi_{ 2128 }(341, a) \) | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(i\) |
sage: chi.jacobi_sum(n)