Properties

Label 2128.341
Modulus $2128$
Conductor $2128$
Order $12$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2128, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,10,6]))
 
pari: [g,chi] = znchar(Mod(341,2128))
 

Basic properties

Modulus: \(2128\)
Conductor: \(2128\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2128.dy

\(\chi_{2128}(341,\cdot)\) \(\chi_{2128}(493,\cdot)\) \(\chi_{2128}(1405,\cdot)\) \(\chi_{2128}(1557,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.114154191573300680692072448.1

Values on generators

\((799,533,913,1009)\) → \((1,i,e\left(\frac{5}{6}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 2128 }(341, a) \) \(1\)\(1\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{7}{12}\right)\)\(-i\)\(-1\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{6}\right)\)\(i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2128 }(341,a) \;\) at \(\;a = \) e.g. 2