Properties

Label 21600.16747
Modulus 2160021600
Conductor 2160021600
Order 360360
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(21600, base_ring=CyclotomicField(360))
 
M = H._module
 
chi = DirichletCharacter(H, M([180,225,320,306]))
 
pari: [g,chi] = znchar(Mod(16747,21600))
 

Basic properties

Modulus: 2160021600
Conductor: 2160021600
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 360360
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 21600.mm

χ21600(187,)\chi_{21600}(187,\cdot) χ21600(403,)\chi_{21600}(403,\cdot) χ21600(427,)\chi_{21600}(427,\cdot) χ21600(1123,)\chi_{21600}(1123,\cdot) χ21600(1147,)\chi_{21600}(1147,\cdot) χ21600(1363,)\chi_{21600}(1363,\cdot) χ21600(1627,)\chi_{21600}(1627,\cdot) χ21600(1867,)\chi_{21600}(1867,\cdot) χ21600(2083,)\chi_{21600}(2083,\cdot) χ21600(2347,)\chi_{21600}(2347,\cdot) χ21600(2563,)\chi_{21600}(2563,\cdot) χ21600(2587,)\chi_{21600}(2587,\cdot) χ21600(2803,)\chi_{21600}(2803,\cdot) χ21600(3067,)\chi_{21600}(3067,\cdot) χ21600(3283,)\chi_{21600}(3283,\cdot) χ21600(3523,)\chi_{21600}(3523,\cdot) χ21600(3787,)\chi_{21600}(3787,\cdot) χ21600(4003,)\chi_{21600}(4003,\cdot) χ21600(4027,)\chi_{21600}(4027,\cdot) χ21600(4723,)\chi_{21600}(4723,\cdot) χ21600(4747,)\chi_{21600}(4747,\cdot) χ21600(4963,)\chi_{21600}(4963,\cdot) χ21600(5227,)\chi_{21600}(5227,\cdot) χ21600(5467,)\chi_{21600}(5467,\cdot) χ21600(5683,)\chi_{21600}(5683,\cdot) χ21600(5947,)\chi_{21600}(5947,\cdot) χ21600(6163,)\chi_{21600}(6163,\cdot) χ21600(6187,)\chi_{21600}(6187,\cdot) χ21600(6403,)\chi_{21600}(6403,\cdot) χ21600(6667,)\chi_{21600}(6667,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ360)\Q(\zeta_{360})
Fixed field: Number field defined by a degree 360 polynomial (not computed)

Values on generators

(6751,8101,6401,7777)(6751,8101,6401,7777)(1,e(58),e(89),e(1720))(-1,e\left(\frac{5}{8}\right),e\left(\frac{8}{9}\right),e\left(\frac{17}{20}\right))

First values

aa 1-11177111113131717191923232929313137374141
χ21600(16747,a) \chi_{ 21600 }(16747, a) 1111e(29)e\left(\frac{2}{9}\right)e(281360)e\left(\frac{281}{360}\right)e(229360)e\left(\frac{229}{360}\right)e(5360)e\left(\frac{53}{60}\right)e(101120)e\left(\frac{101}{120}\right)e(1745)e\left(\frac{17}{45}\right)e(167360)e\left(\frac{167}{360}\right)e(790)e\left(\frac{7}{90}\right)e(73120)e\left(\frac{73}{120}\right)e(47180)e\left(\frac{47}{180}\right)
sage: chi.jacobi_sum(n)
 
χ21600(16747,a)   \chi_{ 21600 }(16747,a) \; at   a=\;a = e.g. 2