from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(21600, base_ring=CyclotomicField(360))
M = H._module
chi = DirichletCharacter(H, M([180,225,320,306]))
pari: [g,chi] = znchar(Mod(16747,21600))
χ21600(187,⋅)
χ21600(403,⋅)
χ21600(427,⋅)
χ21600(1123,⋅)
χ21600(1147,⋅)
χ21600(1363,⋅)
χ21600(1627,⋅)
χ21600(1867,⋅)
χ21600(2083,⋅)
χ21600(2347,⋅)
χ21600(2563,⋅)
χ21600(2587,⋅)
χ21600(2803,⋅)
χ21600(3067,⋅)
χ21600(3283,⋅)
χ21600(3523,⋅)
χ21600(3787,⋅)
χ21600(4003,⋅)
χ21600(4027,⋅)
χ21600(4723,⋅)
χ21600(4747,⋅)
χ21600(4963,⋅)
χ21600(5227,⋅)
χ21600(5467,⋅)
χ21600(5683,⋅)
χ21600(5947,⋅)
χ21600(6163,⋅)
χ21600(6187,⋅)
χ21600(6403,⋅)
χ21600(6667,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(6751,8101,6401,7777) → (−1,e(85),e(98),e(2017))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ21600(16747,a) |
1 | 1 | e(92) | e(360281) | e(360229) | e(6053) | e(120101) | e(4517) | e(360167) | e(907) | e(12073) | e(18047) |