Properties

Label 21952.15357
Modulus $21952$
Conductor $21952$
Order $784$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(21952, base_ring=CyclotomicField(784))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,147,104]))
 
pari: [g,chi] = znchar(Mod(15357,21952))
 

Basic properties

Modulus: \(21952\)
Conductor: \(21952\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(784\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 21952.ee

\(\chi_{21952}(13,\cdot)\) \(\chi_{21952}(69,\cdot)\) \(\chi_{21952}(125,\cdot)\) \(\chi_{21952}(181,\cdot)\) \(\chi_{21952}(237,\cdot)\) \(\chi_{21952}(349,\cdot)\) \(\chi_{21952}(405,\cdot)\) \(\chi_{21952}(461,\cdot)\) \(\chi_{21952}(517,\cdot)\) \(\chi_{21952}(573,\cdot)\) \(\chi_{21952}(629,\cdot)\) \(\chi_{21952}(741,\cdot)\) \(\chi_{21952}(797,\cdot)\) \(\chi_{21952}(853,\cdot)\) \(\chi_{21952}(909,\cdot)\) \(\chi_{21952}(965,\cdot)\) \(\chi_{21952}(1021,\cdot)\) \(\chi_{21952}(1133,\cdot)\) \(\chi_{21952}(1189,\cdot)\) \(\chi_{21952}(1245,\cdot)\) \(\chi_{21952}(1301,\cdot)\) \(\chi_{21952}(1357,\cdot)\) \(\chi_{21952}(1413,\cdot)\) \(\chi_{21952}(1525,\cdot)\) \(\chi_{21952}(1581,\cdot)\) \(\chi_{21952}(1637,\cdot)\) \(\chi_{21952}(1693,\cdot)\) \(\chi_{21952}(1749,\cdot)\) \(\chi_{21952}(1805,\cdot)\) \(\chi_{21952}(1917,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{784})$
Fixed field: Number field defined by a degree 784 polynomial (not computed)

Values on generators

\((17151,9605,17153)\) → \((1,e\left(\frac{3}{16}\right),e\left(\frac{13}{98}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)
\( \chi_{ 21952 }(15357, a) \) \(-1\)\(1\)\(e\left(\frac{545}{784}\right)\)\(e\left(\frac{27}{784}\right)\)\(e\left(\frac{153}{392}\right)\)\(e\left(\frac{415}{784}\right)\)\(e\left(\frac{485}{784}\right)\)\(e\left(\frac{143}{196}\right)\)\(e\left(\frac{111}{196}\right)\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{149}{392}\right)\)\(e\left(\frac{27}{392}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 21952 }(15357,a) \;\) at \(\;a = \) e.g. 2