from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2205, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([35,21,1]))
pari: [g,chi] = znchar(Mod(689,2205))
Basic properties
Modulus: | \(2205\) | |
Conductor: | \(2205\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(42\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2205.dv
\(\chi_{2205}(59,\cdot)\) \(\chi_{2205}(299,\cdot)\) \(\chi_{2205}(614,\cdot)\) \(\chi_{2205}(689,\cdot)\) \(\chi_{2205}(929,\cdot)\) \(\chi_{2205}(1004,\cdot)\) \(\chi_{2205}(1319,\cdot)\) \(\chi_{2205}(1559,\cdot)\) \(\chi_{2205}(1634,\cdot)\) \(\chi_{2205}(1874,\cdot)\) \(\chi_{2205}(1949,\cdot)\) \(\chi_{2205}(2189,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{21})\) |
Fixed field: | 42.42.64499777946714835177141019992254259402911208109553981749879955329445342864388015575823925406164646148681640625.2 |
Values on generators
\((1226,442,1081)\) → \((e\left(\frac{5}{6}\right),-1,e\left(\frac{1}{42}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
\( \chi_{ 2205 }(689, a) \) | \(1\) | \(1\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{4}{7}\right)\) |
sage: chi.jacobi_sum(n)