sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(224, base_ring=CyclotomicField(8))
M = H._module
chi = DirichletCharacter(H, M([0,5,4]))
pari:[g,chi] = znchar(Mod(181,224))
Modulus: | 224 | |
Conductor: | 224 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 8 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ224(13,⋅)
χ224(69,⋅)
χ224(125,⋅)
χ224(181,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(127,197,129) → (1,e(85),−1)
a |
−1 | 1 | 3 | 5 | 9 | 11 | 13 | 15 | 17 | 19 | 23 | 25 |
χ224(181,a) |
−1 | 1 | e(83) | e(81) | −i | e(81) | e(87) | −1 | 1 | e(87) | −i | i |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)