Properties

Label 224.181
Modulus 224224
Conductor 224224
Order 88
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(224, base_ring=CyclotomicField(8)) M = H._module chi = DirichletCharacter(H, M([0,5,4]))
 
Copy content pari:[g,chi] = znchar(Mod(181,224))
 

Basic properties

Modulus: 224224
Conductor: 224224
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 88
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 224.v

χ224(13,)\chi_{224}(13,\cdot) χ224(69,)\chi_{224}(69,\cdot) χ224(125,)\chi_{224}(125,\cdot) χ224(181,)\chi_{224}(181,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ8)\Q(\zeta_{8})
Fixed field: 8.0.5156108238848.1

Values on generators

(127,197,129)(127,197,129)(1,e(58),1)(1,e\left(\frac{5}{8}\right),-1)

First values

aa 1-1113355991111131315151717191923232525
χ224(181,a) \chi_{ 224 }(181, a) 1-111e(38)e\left(\frac{3}{8}\right)e(18)e\left(\frac{1}{8}\right)i-ie(18)e\left(\frac{1}{8}\right)e(78)e\left(\frac{7}{8}\right)1-111e(78)e\left(\frac{7}{8}\right)i-iii
Copy content sage:chi.jacobi_sum(n)
 
χ224(181,a)   \chi_{ 224 }(181,a) \; at   a=\;a = e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
τa(χ224(181,))   \tau_{ a }( \chi_{ 224 }(181,·) )\; at   a=\;a = e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
J(χ224(181,),χ224(n,))   J(\chi_{ 224 }(181,·),\chi_{ 224 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
K(a,b,χ224(181,))  K(a,b,\chi_{ 224 }(181,·)) \; at   a,b=\; a,b = e.g. 1,2