Properties

Label 225.196
Modulus 225225
Conductor 225225
Order 1515
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([20,18]))
 
pari: [g,chi] = znchar(Mod(196,225))
 

Basic properties

Modulus: 225225
Conductor: 225225
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1515
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 225.q

χ225(16,)\chi_{225}(16,\cdot) χ225(31,)\chi_{225}(31,\cdot) χ225(61,)\chi_{225}(61,\cdot) χ225(106,)\chi_{225}(106,\cdot) χ225(121,)\chi_{225}(121,\cdot) χ225(166,)\chi_{225}(166,\cdot) χ225(196,)\chi_{225}(196,\cdot) χ225(211,)\chi_{225}(211,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ15)\Q(\zeta_{15})
Fixed field: Number field defined by a degree 15 polynomial

Values on generators

(101,127)(101,127)(e(23),e(35))(e\left(\frac{2}{3}\right),e\left(\frac{3}{5}\right))

First values

aa 1-11122447788111113131414161617171919
χ225(196,a) \chi_{ 225 }(196, a) 1111e(415)e\left(\frac{4}{15}\right)e(815)e\left(\frac{8}{15}\right)e(23)e\left(\frac{2}{3}\right)e(45)e\left(\frac{4}{5}\right)e(415)e\left(\frac{4}{15}\right)e(1115)e\left(\frac{11}{15}\right)e(1415)e\left(\frac{14}{15}\right)e(115)e\left(\frac{1}{15}\right)e(45)e\left(\frac{4}{5}\right)e(45)e\left(\frac{4}{5}\right)
sage: chi.jacobi_sum(n)
 
χ225(196,a)   \chi_{ 225 }(196,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ225(196,))   \tau_{ a }( \chi_{ 225 }(196,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ225(196,),χ225(n,))   J(\chi_{ 225 }(196,·),\chi_{ 225 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ225(196,))  K(a,b,\chi_{ 225 }(196,·)) \; at   a,b=\; a,b = e.g. 1,2