Properties

Modulus $24$
Structure \(C_{2}\times C_{2}\times C_{2}\)
Order $8$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(24)
 
pari: g = idealstar(,24,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 8
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{2}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{24}(7,\cdot)$, $\chi_{24}(13,\cdot)$, $\chi_{24}(17,\cdot)$

Characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\)
\(\chi_{24}(1,\cdot)\) 24.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{24}(5,\cdot)\) 24.h 2 yes \(-1\) \(1\) \(1\) \(1\) \(1\) \(-1\) \(-1\) \(-1\)
\(\chi_{24}(7,\cdot)\) 24.g 2 no \(-1\) \(1\) \(1\) \(-1\) \(-1\) \(1\) \(1\) \(-1\)
\(\chi_{24}(11,\cdot)\) 24.f 2 yes \(1\) \(1\) \(1\) \(-1\) \(-1\) \(-1\) \(-1\) \(1\)
\(\chi_{24}(13,\cdot)\) 24.d 2 no \(1\) \(1\) \(-1\) \(1\) \(-1\) \(-1\) \(1\) \(-1\)
\(\chi_{24}(17,\cdot)\) 24.e 2 no \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\)
\(\chi_{24}(19,\cdot)\) 24.b 2 no \(-1\) \(1\) \(-1\) \(-1\) \(1\) \(-1\) \(1\) \(1\)
\(\chi_{24}(23,\cdot)\) 24.c 2 no \(1\) \(1\) \(-1\) \(-1\) \(1\) \(1\) \(-1\) \(-1\)