Properties

Label 243.13
Modulus 243243
Conductor 243243
Order 8181
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(243, base_ring=CyclotomicField(162))
 
M = H._module
 
chi = DirichletCharacter(H, M([8]))
 
pari: [g,chi] = znchar(Mod(13,243))
 

Basic properties

Modulus: 243243
Conductor: 243243
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 8181
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 243.i

χ243(4,)\chi_{243}(4,\cdot) χ243(7,)\chi_{243}(7,\cdot) χ243(13,)\chi_{243}(13,\cdot) χ243(16,)\chi_{243}(16,\cdot) χ243(22,)\chi_{243}(22,\cdot) χ243(25,)\chi_{243}(25,\cdot) χ243(31,)\chi_{243}(31,\cdot) χ243(34,)\chi_{243}(34,\cdot) χ243(40,)\chi_{243}(40,\cdot) χ243(43,)\chi_{243}(43,\cdot) χ243(49,)\chi_{243}(49,\cdot) χ243(52,)\chi_{243}(52,\cdot) χ243(58,)\chi_{243}(58,\cdot) χ243(61,)\chi_{243}(61,\cdot) χ243(67,)\chi_{243}(67,\cdot) χ243(70,)\chi_{243}(70,\cdot) χ243(76,)\chi_{243}(76,\cdot) χ243(79,)\chi_{243}(79,\cdot) χ243(85,)\chi_{243}(85,\cdot) χ243(88,)\chi_{243}(88,\cdot) χ243(94,)\chi_{243}(94,\cdot) χ243(97,)\chi_{243}(97,\cdot) χ243(103,)\chi_{243}(103,\cdot) χ243(106,)\chi_{243}(106,\cdot) χ243(112,)\chi_{243}(112,\cdot) χ243(115,)\chi_{243}(115,\cdot) χ243(121,)\chi_{243}(121,\cdot) χ243(124,)\chi_{243}(124,\cdot) χ243(130,)\chi_{243}(130,\cdot) χ243(133,)\chi_{243}(133,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ81)\Q(\zeta_{81})
Fixed field: Number field defined by a degree 81 polynomial

Values on generators

22e(481)e\left(\frac{4}{81}\right)

First values

aa 1-111224455778810101111131314141616
χ243(13,a) \chi_{ 243 }(13, a) 1111e(481)e\left(\frac{4}{81}\right)e(881)e\left(\frac{8}{81}\right)e(1181)e\left(\frac{11}{81}\right)e(3781)e\left(\frac{37}{81}\right)e(427)e\left(\frac{4}{27}\right)e(527)e\left(\frac{5}{27}\right)e(7981)e\left(\frac{79}{81}\right)e(3281)e\left(\frac{32}{81}\right)e(4181)e\left(\frac{41}{81}\right)e(1681)e\left(\frac{16}{81}\right)
sage: chi.jacobi_sum(n)
 
χ243(13,a)   \chi_{ 243 }(13,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ243(13,))   \tau_{ a }( \chi_{ 243 }(13,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ243(13,),χ243(n,))   J(\chi_{ 243 }(13,·),\chi_{ 243 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ243(13,))  K(a,b,\chi_{ 243 }(13,·)) \; at   a,b=\; a,b = e.g. 1,2