from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(243, base_ring=CyclotomicField(162))
M = H._module
chi = DirichletCharacter(H, M([8]))
pari: [g,chi] = znchar(Mod(13,243))
χ243(4,⋅)
χ243(7,⋅)
χ243(13,⋅)
χ243(16,⋅)
χ243(22,⋅)
χ243(25,⋅)
χ243(31,⋅)
χ243(34,⋅)
χ243(40,⋅)
χ243(43,⋅)
χ243(49,⋅)
χ243(52,⋅)
χ243(58,⋅)
χ243(61,⋅)
χ243(67,⋅)
χ243(70,⋅)
χ243(76,⋅)
χ243(79,⋅)
χ243(85,⋅)
χ243(88,⋅)
χ243(94,⋅)
χ243(97,⋅)
χ243(103,⋅)
χ243(106,⋅)
χ243(112,⋅)
χ243(115,⋅)
χ243(121,⋅)
χ243(124,⋅)
χ243(130,⋅)
χ243(133,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(814)
a |
−1 | 1 | 2 | 4 | 5 | 7 | 8 | 10 | 11 | 13 | 14 | 16 |
χ243(13,a) |
1 | 1 | e(814) | e(818) | e(8111) | e(8137) | e(274) | e(275) | e(8179) | e(8132) | e(8141) | e(8116) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)