sage: H = DirichletGroup(243675)
pari: g = idealstar(,243675,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 123120 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{18}\times C_{3420}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{243675}(36101,\cdot)$, $\chi_{243675}(77977,\cdot)$, $\chi_{243675}(129601,\cdot)$ |
First 32 of 123120 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(22\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{243675}(1,\cdot)\) | 243675.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{243675}(2,\cdot)\) | 243675.beq | 3420 | yes | \(-1\) | \(1\) | \(e\left(\frac{371}{3420}\right)\) | \(e\left(\frac{371}{1710}\right)\) | \(e\left(\frac{395}{684}\right)\) | \(e\left(\frac{371}{1140}\right)\) | \(e\left(\frac{1403}{1710}\right)\) | \(e\left(\frac{1219}{3420}\right)\) | \(e\left(\frac{391}{570}\right)\) | \(e\left(\frac{371}{855}\right)\) | \(e\left(\frac{493}{3420}\right)\) | \(e\left(\frac{353}{380}\right)\) |
\(\chi_{243675}(4,\cdot)\) | 243675.bbx | 1710 | yes | \(1\) | \(1\) | \(e\left(\frac{371}{1710}\right)\) | \(e\left(\frac{371}{855}\right)\) | \(e\left(\frac{53}{342}\right)\) | \(e\left(\frac{371}{570}\right)\) | \(e\left(\frac{548}{855}\right)\) | \(e\left(\frac{1219}{1710}\right)\) | \(e\left(\frac{106}{285}\right)\) | \(e\left(\frac{742}{855}\right)\) | \(e\left(\frac{493}{1710}\right)\) | \(e\left(\frac{163}{190}\right)\) |
\(\chi_{243675}(7,\cdot)\) | 243675.yj | 684 | no | \(-1\) | \(1\) | \(e\left(\frac{395}{684}\right)\) | \(e\left(\frac{53}{342}\right)\) | \(e\left(\frac{179}{684}\right)\) | \(e\left(\frac{167}{228}\right)\) | \(e\left(\frac{50}{171}\right)\) | \(e\left(\frac{109}{684}\right)\) | \(e\left(\frac{287}{342}\right)\) | \(e\left(\frac{53}{171}\right)\) | \(e\left(\frac{161}{228}\right)\) | \(e\left(\frac{595}{684}\right)\) |
\(\chi_{243675}(8,\cdot)\) | 243675.bac | 1140 | no | \(-1\) | \(1\) | \(e\left(\frac{371}{1140}\right)\) | \(e\left(\frac{371}{570}\right)\) | \(e\left(\frac{167}{228}\right)\) | \(e\left(\frac{371}{380}\right)\) | \(e\left(\frac{263}{570}\right)\) | \(e\left(\frac{79}{1140}\right)\) | \(e\left(\frac{11}{190}\right)\) | \(e\left(\frac{86}{285}\right)\) | \(e\left(\frac{493}{1140}\right)\) | \(e\left(\frac{299}{380}\right)\) |
\(\chi_{243675}(11,\cdot)\) | 243675.bcc | 1710 | yes | \(-1\) | \(1\) | \(e\left(\frac{1403}{1710}\right)\) | \(e\left(\frac{548}{855}\right)\) | \(e\left(\frac{50}{171}\right)\) | \(e\left(\frac{263}{570}\right)\) | \(e\left(\frac{1043}{1710}\right)\) | \(e\left(\frac{86}{855}\right)\) | \(e\left(\frac{193}{1710}\right)\) | \(e\left(\frac{241}{855}\right)\) | \(e\left(\frac{121}{190}\right)\) | \(e\left(\frac{368}{855}\right)\) |
\(\chi_{243675}(13,\cdot)\) | 243675.bev | 3420 | yes | \(1\) | \(1\) | \(e\left(\frac{1219}{3420}\right)\) | \(e\left(\frac{1219}{1710}\right)\) | \(e\left(\frac{109}{684}\right)\) | \(e\left(\frac{79}{1140}\right)\) | \(e\left(\frac{86}{855}\right)\) | \(e\left(\frac{341}{3420}\right)\) | \(e\left(\frac{49}{95}\right)\) | \(e\left(\frac{364}{855}\right)\) | \(e\left(\frac{1457}{3420}\right)\) | \(e\left(\frac{521}{1140}\right)\) |
\(\chi_{243675}(14,\cdot)\) | 243675.bdj | 1710 | yes | \(1\) | \(1\) | \(e\left(\frac{391}{570}\right)\) | \(e\left(\frac{106}{285}\right)\) | \(e\left(\frac{287}{342}\right)\) | \(e\left(\frac{11}{190}\right)\) | \(e\left(\frac{193}{1710}\right)\) | \(e\left(\frac{49}{95}\right)\) | \(e\left(\frac{449}{855}\right)\) | \(e\left(\frac{212}{285}\right)\) | \(e\left(\frac{727}{855}\right)\) | \(e\left(\frac{683}{855}\right)\) |
\(\chi_{243675}(16,\cdot)\) | 243675.zk | 855 | yes | \(1\) | \(1\) | \(e\left(\frac{371}{855}\right)\) | \(e\left(\frac{742}{855}\right)\) | \(e\left(\frac{53}{171}\right)\) | \(e\left(\frac{86}{285}\right)\) | \(e\left(\frac{241}{855}\right)\) | \(e\left(\frac{364}{855}\right)\) | \(e\left(\frac{212}{285}\right)\) | \(e\left(\frac{629}{855}\right)\) | \(e\left(\frac{493}{855}\right)\) | \(e\left(\frac{68}{95}\right)\) |
\(\chi_{243675}(17,\cdot)\) | 243675.bdt | 3420 | no | \(1\) | \(1\) | \(e\left(\frac{493}{3420}\right)\) | \(e\left(\frac{493}{1710}\right)\) | \(e\left(\frac{161}{228}\right)\) | \(e\left(\frac{493}{1140}\right)\) | \(e\left(\frac{121}{190}\right)\) | \(e\left(\frac{1457}{3420}\right)\) | \(e\left(\frac{727}{855}\right)\) | \(e\left(\frac{493}{855}\right)\) | \(e\left(\frac{1009}{3420}\right)\) | \(e\left(\frac{2671}{3420}\right)\) |
\(\chi_{243675}(22,\cdot)\) | 243675.bdq | 3420 | yes | \(1\) | \(1\) | \(e\left(\frac{353}{380}\right)\) | \(e\left(\frac{163}{190}\right)\) | \(e\left(\frac{595}{684}\right)\) | \(e\left(\frac{299}{380}\right)\) | \(e\left(\frac{368}{855}\right)\) | \(e\left(\frac{521}{1140}\right)\) | \(e\left(\frac{683}{855}\right)\) | \(e\left(\frac{68}{95}\right)\) | \(e\left(\frac{2671}{3420}\right)\) | \(e\left(\frac{1229}{3420}\right)\) |
\(\chi_{243675}(23,\cdot)\) | 243675.beb | 3420 | yes | \(1\) | \(1\) | \(e\left(\frac{2011}{3420}\right)\) | \(e\left(\frac{301}{1710}\right)\) | \(e\left(\frac{385}{684}\right)\) | \(e\left(\frac{871}{1140}\right)\) | \(e\left(\frac{493}{1710}\right)\) | \(e\left(\frac{2699}{3420}\right)\) | \(e\left(\frac{43}{285}\right)\) | \(e\left(\frac{301}{855}\right)\) | \(e\left(\frac{2723}{3420}\right)\) | \(e\left(\frac{333}{380}\right)\) |
\(\chi_{243675}(26,\cdot)\) | 243675.or | 114 | no | \(-1\) | \(1\) | \(e\left(\frac{53}{114}\right)\) | \(e\left(\frac{53}{57}\right)\) | \(e\left(\frac{14}{19}\right)\) | \(e\left(\frac{15}{38}\right)\) | \(e\left(\frac{35}{38}\right)\) | \(e\left(\frac{26}{57}\right)\) | \(e\left(\frac{23}{114}\right)\) | \(e\left(\frac{49}{57}\right)\) | \(e\left(\frac{65}{114}\right)\) | \(e\left(\frac{22}{57}\right)\) |
\(\chi_{243675}(28,\cdot)\) | 243675.rq | 180 | no | \(-1\) | \(1\) | \(e\left(\frac{143}{180}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{23}{60}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{157}{180}\right)\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{8}{45}\right)\) | \(e\left(\frac{179}{180}\right)\) | \(e\left(\frac{131}{180}\right)\) |
\(\chi_{243675}(29,\cdot)\) | 243675.baj | 1710 | yes | \(1\) | \(1\) | \(e\left(\frac{39}{190}\right)\) | \(e\left(\frac{39}{95}\right)\) | \(e\left(\frac{289}{342}\right)\) | \(e\left(\frac{117}{190}\right)\) | \(e\left(\frac{671}{1710}\right)\) | \(e\left(\frac{199}{285}\right)\) | \(e\left(\frac{43}{855}\right)\) | \(e\left(\frac{78}{95}\right)\) | \(e\left(\frac{314}{855}\right)\) | \(e\left(\frac{511}{855}\right)\) |
\(\chi_{243675}(31,\cdot)\) | 243675.bcl | 1710 | yes | \(-1\) | \(1\) | \(e\left(\frac{679}{1710}\right)\) | \(e\left(\frac{679}{855}\right)\) | \(e\left(\frac{115}{171}\right)\) | \(e\left(\frac{109}{570}\right)\) | \(e\left(\frac{182}{855}\right)\) | \(e\left(\frac{1661}{1710}\right)\) | \(e\left(\frac{119}{1710}\right)\) | \(e\left(\frac{503}{855}\right)\) | \(e\left(\frac{9}{95}\right)\) | \(e\left(\frac{1043}{1710}\right)\) |
\(\chi_{243675}(32,\cdot)\) | 243675.yb | 684 | no | \(-1\) | \(1\) | \(e\left(\frac{371}{684}\right)\) | \(e\left(\frac{29}{342}\right)\) | \(e\left(\frac{607}{684}\right)\) | \(e\left(\frac{143}{228}\right)\) | \(e\left(\frac{35}{342}\right)\) | \(e\left(\frac{535}{684}\right)\) | \(e\left(\frac{49}{114}\right)\) | \(e\left(\frac{29}{171}\right)\) | \(e\left(\frac{493}{684}\right)\) | \(e\left(\frac{49}{76}\right)\) |
\(\chi_{243675}(34,\cdot)\) | 243675.bdl | 1710 | yes | \(-1\) | \(1\) | \(e\left(\frac{24}{95}\right)\) | \(e\left(\frac{48}{95}\right)\) | \(e\left(\frac{97}{342}\right)\) | \(e\left(\frac{72}{95}\right)\) | \(e\left(\frac{391}{855}\right)\) | \(e\left(\frac{223}{285}\right)\) | \(e\left(\frac{917}{1710}\right)\) | \(e\left(\frac{1}{95}\right)\) | \(e\left(\frac{751}{1710}\right)\) | \(e\left(\frac{607}{855}\right)\) |
\(\chi_{243675}(37,\cdot)\) | 243675.zz | 1140 | no | \(1\) | \(1\) | \(e\left(\frac{1043}{1140}\right)\) | \(e\left(\frac{473}{570}\right)\) | \(e\left(\frac{73}{228}\right)\) | \(e\left(\frac{283}{380}\right)\) | \(e\left(\frac{272}{285}\right)\) | \(e\left(\frac{577}{1140}\right)\) | \(e\left(\frac{67}{285}\right)\) | \(e\left(\frac{188}{285}\right)\) | \(e\left(\frac{223}{380}\right)\) | \(e\left(\frac{991}{1140}\right)\) |
\(\chi_{243675}(41,\cdot)\) | 243675.baq | 1710 | yes | \(1\) | \(1\) | \(e\left(\frac{97}{285}\right)\) | \(e\left(\frac{194}{285}\right)\) | \(e\left(\frac{85}{171}\right)\) | \(e\left(\frac{2}{95}\right)\) | \(e\left(\frac{787}{1710}\right)\) | \(e\left(\frac{461}{570}\right)\) | \(e\left(\frac{716}{855}\right)\) | \(e\left(\frac{103}{285}\right)\) | \(e\left(\frac{71}{1710}\right)\) | \(e\left(\frac{1369}{1710}\right)\) |
\(\chi_{243675}(43,\cdot)\) | 243675.yv | 684 | no | \(-1\) | \(1\) | \(e\left(\frac{85}{684}\right)\) | \(e\left(\frac{85}{342}\right)\) | \(e\left(\frac{77}{684}\right)\) | \(e\left(\frac{85}{228}\right)\) | \(e\left(\frac{68}{171}\right)\) | \(e\left(\frac{35}{684}\right)\) | \(e\left(\frac{9}{38}\right)\) | \(e\left(\frac{85}{171}\right)\) | \(e\left(\frac{305}{684}\right)\) | \(e\left(\frac{119}{228}\right)\) |
\(\chi_{243675}(44,\cdot)\) | 243675.bda | 1710 | no | \(-1\) | \(1\) | \(e\left(\frac{32}{855}\right)\) | \(e\left(\frac{64}{855}\right)\) | \(e\left(\frac{17}{38}\right)\) | \(e\left(\frac{32}{285}\right)\) | \(e\left(\frac{143}{570}\right)\) | \(e\left(\frac{1391}{1710}\right)\) | \(e\left(\frac{829}{1710}\right)\) | \(e\left(\frac{128}{855}\right)\) | \(e\left(\frac{791}{855}\right)\) | \(e\left(\frac{493}{1710}\right)\) |
\(\chi_{243675}(46,\cdot)\) | 243675.xb | 570 | no | \(-1\) | \(1\) | \(e\left(\frac{397}{570}\right)\) | \(e\left(\frac{112}{285}\right)\) | \(e\left(\frac{8}{57}\right)\) | \(e\left(\frac{17}{190}\right)\) | \(e\left(\frac{31}{285}\right)\) | \(e\left(\frac{83}{570}\right)\) | \(e\left(\frac{159}{190}\right)\) | \(e\left(\frac{224}{285}\right)\) | \(e\left(\frac{268}{285}\right)\) | \(e\left(\frac{153}{190}\right)\) |
\(\chi_{243675}(47,\cdot)\) | 243675.bff | 3420 | yes | \(1\) | \(1\) | \(e\left(\frac{359}{1140}\right)\) | \(e\left(\frac{359}{570}\right)\) | \(e\left(\frac{599}{684}\right)\) | \(e\left(\frac{359}{380}\right)\) | \(e\left(\frac{701}{1710}\right)\) | \(e\left(\frac{311}{1140}\right)\) | \(e\left(\frac{163}{855}\right)\) | \(e\left(\frac{74}{285}\right)\) | \(e\left(\frac{221}{3420}\right)\) | \(e\left(\frac{2479}{3420}\right)\) |
\(\chi_{243675}(49,\cdot)\) | 243675.ud | 342 | no | \(1\) | \(1\) | \(e\left(\frac{53}{342}\right)\) | \(e\left(\frac{53}{171}\right)\) | \(e\left(\frac{179}{342}\right)\) | \(e\left(\frac{53}{114}\right)\) | \(e\left(\frac{100}{171}\right)\) | \(e\left(\frac{109}{342}\right)\) | \(e\left(\frac{116}{171}\right)\) | \(e\left(\frac{106}{171}\right)\) | \(e\left(\frac{47}{114}\right)\) | \(e\left(\frac{253}{342}\right)\) |
\(\chi_{243675}(52,\cdot)\) | 243675.bec | 3420 | yes | \(1\) | \(1\) | \(e\left(\frac{1961}{3420}\right)\) | \(e\left(\frac{251}{1710}\right)\) | \(e\left(\frac{215}{684}\right)\) | \(e\left(\frac{821}{1140}\right)\) | \(e\left(\frac{634}{855}\right)\) | \(e\left(\frac{2779}{3420}\right)\) | \(e\left(\frac{253}{285}\right)\) | \(e\left(\frac{251}{855}\right)\) | \(e\left(\frac{2443}{3420}\right)\) | \(e\left(\frac{359}{1140}\right)\) |
\(\chi_{243675}(53,\cdot)\) | 243675.bey | 3420 | no | \(-1\) | \(1\) | \(e\left(\frac{317}{3420}\right)\) | \(e\left(\frac{317}{1710}\right)\) | \(e\left(\frac{35}{228}\right)\) | \(e\left(\frac{317}{1140}\right)\) | \(e\left(\frac{487}{570}\right)\) | \(e\left(\frac{1693}{3420}\right)\) | \(e\left(\frac{421}{1710}\right)\) | \(e\left(\frac{317}{855}\right)\) | \(e\left(\frac{3071}{3420}\right)\) | \(e\left(\frac{3239}{3420}\right)\) |
\(\chi_{243675}(56,\cdot)\) | 243675.bbn | 1710 | yes | \(1\) | \(1\) | \(e\left(\frac{772}{855}\right)\) | \(e\left(\frac{689}{855}\right)\) | \(e\left(\frac{170}{171}\right)\) | \(e\left(\frac{202}{285}\right)\) | \(e\left(\frac{1289}{1710}\right)\) | \(e\left(\frac{391}{1710}\right)\) | \(e\left(\frac{767}{855}\right)\) | \(e\left(\frac{523}{855}\right)\) | \(e\left(\frac{79}{570}\right)\) | \(e\left(\frac{1123}{1710}\right)\) |
\(\chi_{243675}(58,\cdot)\) | 243675.beg | 3420 | yes | \(-1\) | \(1\) | \(e\left(\frac{1073}{3420}\right)\) | \(e\left(\frac{1073}{1710}\right)\) | \(e\left(\frac{289}{684}\right)\) | \(e\left(\frac{1073}{1140}\right)\) | \(e\left(\frac{182}{855}\right)\) | \(e\left(\frac{187}{3420}\right)\) | \(e\left(\frac{1259}{1710}\right)\) | \(e\left(\frac{218}{855}\right)\) | \(e\left(\frac{583}{1140}\right)\) | \(e\left(\frac{1801}{3420}\right)\) |
\(\chi_{243675}(59,\cdot)\) | 243675.bdj | 1710 | yes | \(1\) | \(1\) | \(e\left(\frac{289}{570}\right)\) | \(e\left(\frac{4}{285}\right)\) | \(e\left(\frac{113}{342}\right)\) | \(e\left(\frac{99}{190}\right)\) | \(e\left(\frac{1357}{1710}\right)\) | \(e\left(\frac{61}{95}\right)\) | \(e\left(\frac{716}{855}\right)\) | \(e\left(\frac{8}{285}\right)\) | \(e\left(\frac{748}{855}\right)\) | \(e\left(\frac{257}{855}\right)\) |
\(\chi_{243675}(61,\cdot)\) | 243675.zr | 855 | yes | \(1\) | \(1\) | \(e\left(\frac{91}{95}\right)\) | \(e\left(\frac{87}{95}\right)\) | \(e\left(\frac{98}{171}\right)\) | \(e\left(\frac{83}{95}\right)\) | \(e\left(\frac{679}{855}\right)\) | \(e\left(\frac{232}{285}\right)\) | \(e\left(\frac{454}{855}\right)\) | \(e\left(\frac{79}{95}\right)\) | \(e\left(\frac{452}{855}\right)\) | \(e\left(\frac{643}{855}\right)\) |
\(\chi_{243675}(62,\cdot)\) | 243675.qn | 180 | no | \(1\) | \(1\) | \(e\left(\frac{91}{180}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(i\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{59}{180}\right)\) | \(e\left(\frac{34}{45}\right)\) | \(e\left(\frac{1}{45}\right)\) | \(e\left(\frac{43}{180}\right)\) | \(e\left(\frac{97}{180}\right)\) |