from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2557, base_ring=CyclotomicField(426))
M = H._module
chi = DirichletCharacter(H, M([191]))
pari: [g,chi] = znchar(Mod(1001,2557))
χ2557(12,⋅)
χ2557(21,⋅)
χ2557(62,⋅)
χ2557(64,⋅)
χ2557(69,⋅)
χ2557(75,⋅)
χ2557(97,⋅)
χ2557(112,⋅)
χ2557(178,⋅)
χ2557(197,⋅)
χ2557(205,⋅)
χ2557(226,⋅)
χ2557(241,⋅)
χ2557(258,⋅)
χ2557(282,⋅)
χ2557(283,⋅)
χ2557(334,⋅)
χ2557(343,⋅)
χ2557(353,⋅)
χ2557(360,⋅)
χ2557(362,⋅)
χ2557(368,⋅)
χ2557(396,⋅)
χ2557(400,⋅)
χ2557(415,⋅)
χ2557(433,⋅)
χ2557(440,⋅)
χ2557(467,⋅)
χ2557(484,⋅)
χ2557(520,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(426191)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ2557(1001,a) |
1 | 1 | e(426191) | e(21319) | e(213191) | e(42623) | e(426229) | e(213116) | e(14249) | e(21338) | e(213107) | e(21317) |