Properties

Label 2557.1001
Modulus $2557$
Conductor $2557$
Order $426$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2557, base_ring=CyclotomicField(426))
 
M = H._module
 
chi = DirichletCharacter(H, M([191]))
 
pari: [g,chi] = znchar(Mod(1001,2557))
 

Basic properties

Modulus: \(2557\)
Conductor: \(2557\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(426\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2557.n

\(\chi_{2557}(12,\cdot)\) \(\chi_{2557}(21,\cdot)\) \(\chi_{2557}(62,\cdot)\) \(\chi_{2557}(64,\cdot)\) \(\chi_{2557}(69,\cdot)\) \(\chi_{2557}(75,\cdot)\) \(\chi_{2557}(97,\cdot)\) \(\chi_{2557}(112,\cdot)\) \(\chi_{2557}(178,\cdot)\) \(\chi_{2557}(197,\cdot)\) \(\chi_{2557}(205,\cdot)\) \(\chi_{2557}(226,\cdot)\) \(\chi_{2557}(241,\cdot)\) \(\chi_{2557}(258,\cdot)\) \(\chi_{2557}(282,\cdot)\) \(\chi_{2557}(283,\cdot)\) \(\chi_{2557}(334,\cdot)\) \(\chi_{2557}(343,\cdot)\) \(\chi_{2557}(353,\cdot)\) \(\chi_{2557}(360,\cdot)\) \(\chi_{2557}(362,\cdot)\) \(\chi_{2557}(368,\cdot)\) \(\chi_{2557}(396,\cdot)\) \(\chi_{2557}(400,\cdot)\) \(\chi_{2557}(415,\cdot)\) \(\chi_{2557}(433,\cdot)\) \(\chi_{2557}(440,\cdot)\) \(\chi_{2557}(467,\cdot)\) \(\chi_{2557}(484,\cdot)\) \(\chi_{2557}(520,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{213})$
Fixed field: Number field defined by a degree 426 polynomial (not computed)

Values on generators

\(2\) → \(e\left(\frac{191}{426}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 2557 }(1001, a) \) \(1\)\(1\)\(e\left(\frac{191}{426}\right)\)\(e\left(\frac{19}{213}\right)\)\(e\left(\frac{191}{213}\right)\)\(e\left(\frac{23}{426}\right)\)\(e\left(\frac{229}{426}\right)\)\(e\left(\frac{116}{213}\right)\)\(e\left(\frac{49}{142}\right)\)\(e\left(\frac{38}{213}\right)\)\(e\left(\frac{107}{213}\right)\)\(e\left(\frac{17}{213}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2557 }(1001,a) \;\) at \(\;a = \) e.g. 2