from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2557, base_ring=CyclotomicField(1278))
M = H._module
chi = DirichletCharacter(H, M([1108]))
pari: [g,chi] = znchar(Mod(1066,2557))
χ2557(3,⋅)
χ2557(9,⋅)
χ2557(10,⋅)
χ2557(11,⋅)
χ2557(13,⋅)
χ2557(16,⋅)
χ2557(19,⋅)
χ2557(28,⋅)
χ2557(48,⋅)
χ2557(49,⋅)
χ2557(71,⋅)
χ2557(81,⋅)
χ2557(84,⋅)
χ2557(85,⋅)
χ2557(90,⋅)
χ2557(92,⋅)
χ2557(99,⋅)
χ2557(100,⋅)
χ2557(110,⋅)
χ2557(116,⋅)
χ2557(117,⋅)
χ2557(121,⋅)
χ2557(130,⋅)
χ2557(136,⋅)
χ2557(143,⋅)
χ2557(147,⋅)
χ2557(148,⋅)
χ2557(158,⋅)
χ2557(161,⋅)
χ2557(169,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(639554)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ2557(1066,a) |
1 | 1 | e(639554) | e(639263) | e(639469) | e(639389) | e(639178) | e(639238) | e(213128) | e(639526) | e(639304) | e(639538) |