Properties

Label 2557.1076
Modulus 25572557
Conductor 25572557
Order 639639
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2557, base_ring=CyclotomicField(1278))
 
M = H._module
 
chi = DirichletCharacter(H, M([194]))
 
pari: [g,chi] = znchar(Mod(1076,2557))
 

Basic properties

Modulus: 25572557
Conductor: 25572557
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 639639
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2557.o

χ2557(3,)\chi_{2557}(3,\cdot) χ2557(9,)\chi_{2557}(9,\cdot) χ2557(10,)\chi_{2557}(10,\cdot) χ2557(11,)\chi_{2557}(11,\cdot) χ2557(13,)\chi_{2557}(13,\cdot) χ2557(16,)\chi_{2557}(16,\cdot) χ2557(19,)\chi_{2557}(19,\cdot) χ2557(28,)\chi_{2557}(28,\cdot) χ2557(48,)\chi_{2557}(48,\cdot) χ2557(49,)\chi_{2557}(49,\cdot) χ2557(71,)\chi_{2557}(71,\cdot) χ2557(81,)\chi_{2557}(81,\cdot) χ2557(84,)\chi_{2557}(84,\cdot) χ2557(85,)\chi_{2557}(85,\cdot) χ2557(90,)\chi_{2557}(90,\cdot) χ2557(92,)\chi_{2557}(92,\cdot) χ2557(99,)\chi_{2557}(99,\cdot) χ2557(100,)\chi_{2557}(100,\cdot) χ2557(110,)\chi_{2557}(110,\cdot) χ2557(116,)\chi_{2557}(116,\cdot) χ2557(117,)\chi_{2557}(117,\cdot) χ2557(121,)\chi_{2557}(121,\cdot) χ2557(130,)\chi_{2557}(130,\cdot) χ2557(136,)\chi_{2557}(136,\cdot) χ2557(143,)\chi_{2557}(143,\cdot) χ2557(147,)\chi_{2557}(147,\cdot) χ2557(148,)\chi_{2557}(148,\cdot) χ2557(158,)\chi_{2557}(158,\cdot) χ2557(161,)\chi_{2557}(161,\cdot) χ2557(169,)\chi_{2557}(169,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ639)\Q(\zeta_{639})
Fixed field: Number field defined by a degree 639 polynomial (not computed)

Values on generators

22e(97639)e\left(\frac{97}{639}\right)

First values

aa 1-111223344556677889910101111
χ2557(1076,a) \chi_{ 2557 }(1076, a) 1111e(97639)e\left(\frac{97}{639}\right)e(181639)e\left(\frac{181}{639}\right)e(194639)e\left(\frac{194}{639}\right)e(586639)e\left(\frac{586}{639}\right)e(278639)e\left(\frac{278}{639}\right)e(623639)e\left(\frac{623}{639}\right)e(97213)e\left(\frac{97}{213}\right)e(362639)e\left(\frac{362}{639}\right)e(44639)e\left(\frac{44}{639}\right)e(431639)e\left(\frac{431}{639}\right)
sage: chi.jacobi_sum(n)
 
χ2557(1076,a)   \chi_{ 2557 }(1076,a) \; at   a=\;a = e.g. 2