Basic properties
Modulus: | \(2557\) | |
Conductor: | \(2557\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(639\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 2557.o
\(\chi_{2557}(3,\cdot)\) \(\chi_{2557}(9,\cdot)\) \(\chi_{2557}(10,\cdot)\) \(\chi_{2557}(11,\cdot)\) \(\chi_{2557}(13,\cdot)\) \(\chi_{2557}(16,\cdot)\) \(\chi_{2557}(19,\cdot)\) \(\chi_{2557}(28,\cdot)\) \(\chi_{2557}(48,\cdot)\) \(\chi_{2557}(49,\cdot)\) \(\chi_{2557}(71,\cdot)\) \(\chi_{2557}(81,\cdot)\) \(\chi_{2557}(84,\cdot)\) \(\chi_{2557}(85,\cdot)\) \(\chi_{2557}(90,\cdot)\) \(\chi_{2557}(92,\cdot)\) \(\chi_{2557}(99,\cdot)\) \(\chi_{2557}(100,\cdot)\) \(\chi_{2557}(110,\cdot)\) \(\chi_{2557}(116,\cdot)\) \(\chi_{2557}(117,\cdot)\) \(\chi_{2557}(121,\cdot)\) \(\chi_{2557}(130,\cdot)\) \(\chi_{2557}(136,\cdot)\) \(\chi_{2557}(143,\cdot)\) \(\chi_{2557}(147,\cdot)\) \(\chi_{2557}(148,\cdot)\) \(\chi_{2557}(158,\cdot)\) \(\chi_{2557}(161,\cdot)\) \(\chi_{2557}(169,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{639})$ |
Fixed field: | Number field defined by a degree 639 polynomial (not computed) |
Values on generators
\(2\) → \(e\left(\frac{97}{639}\right)\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 2557 }(1076, a) \) | \(1\) | \(1\) | \(e\left(\frac{97}{639}\right)\) | \(e\left(\frac{181}{639}\right)\) | \(e\left(\frac{194}{639}\right)\) | \(e\left(\frac{586}{639}\right)\) | \(e\left(\frac{278}{639}\right)\) | \(e\left(\frac{623}{639}\right)\) | \(e\left(\frac{97}{213}\right)\) | \(e\left(\frac{362}{639}\right)\) | \(e\left(\frac{44}{639}\right)\) | \(e\left(\frac{431}{639}\right)\) |