sage: H = DirichletGroup(259200)
pari: g = idealstar(,259200,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 69120 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{4}\times C_{4320}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{259200}(157951,\cdot)$, $\chi_{259200}(202501,\cdot)$, $\chi_{259200}(6401,\cdot)$, $\chi_{259200}(72577,\cdot)$ |
First 32 of 69120 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{259200}(1,\cdot)\) | 259200.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{259200}(7,\cdot)\) | 259200.vg | 432 | no | \(1\) | \(1\) | \(e\left(\frac{133}{216}\right)\) | \(e\left(\frac{395}{432}\right)\) | \(e\left(\frac{349}{432}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{59}{144}\right)\) | \(e\left(\frac{191}{216}\right)\) | \(e\left(\frac{389}{432}\right)\) | \(e\left(\frac{25}{27}\right)\) | \(e\left(\frac{73}{144}\right)\) | \(e\left(\frac{17}{216}\right)\) |
\(\chi_{259200}(11,\cdot)\) | 259200.baz | 4320 | yes | \(1\) | \(1\) | \(e\left(\frac{395}{432}\right)\) | \(e\left(\frac{911}{4320}\right)\) | \(e\left(\frac{4189}{4320}\right)\) | \(e\left(\frac{259}{360}\right)\) | \(e\left(\frac{791}{1440}\right)\) | \(e\left(\frac{293}{2160}\right)\) | \(e\left(\frac{977}{4320}\right)\) | \(e\left(\frac{521}{540}\right)\) | \(e\left(\frac{1033}{1440}\right)\) | \(e\left(\frac{1397}{2160}\right)\) |
\(\chi_{259200}(13,\cdot)\) | 259200.baq | 4320 | yes | \(-1\) | \(1\) | \(e\left(\frac{349}{432}\right)\) | \(e\left(\frac{4189}{4320}\right)\) | \(e\left(\frac{1151}{4320}\right)\) | \(e\left(\frac{131}{360}\right)\) | \(e\left(\frac{1429}{1440}\right)\) | \(e\left(\frac{1387}{2160}\right)\) | \(e\left(\frac{163}{4320}\right)\) | \(e\left(\frac{169}{540}\right)\) | \(e\left(\frac{707}{1440}\right)\) | \(e\left(\frac{1543}{2160}\right)\) |
\(\chi_{259200}(17,\cdot)\) | 259200.vb | 360 | no | \(1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{259}{360}\right)\) | \(e\left(\frac{131}{360}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{19}{120}\right)\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{193}{360}\right)\) | \(e\left(\frac{19}{45}\right)\) | \(e\left(\frac{47}{120}\right)\) | \(e\left(\frac{43}{180}\right)\) |
\(\chi_{259200}(19,\cdot)\) | 259200.zv | 1440 | no | \(-1\) | \(1\) | \(e\left(\frac{59}{144}\right)\) | \(e\left(\frac{791}{1440}\right)\) | \(e\left(\frac{1429}{1440}\right)\) | \(e\left(\frac{19}{120}\right)\) | \(e\left(\frac{431}{480}\right)\) | \(e\left(\frac{173}{720}\right)\) | \(e\left(\frac{137}{1440}\right)\) | \(e\left(\frac{41}{180}\right)\) | \(e\left(\frac{193}{480}\right)\) | \(e\left(\frac{197}{720}\right)\) |
\(\chi_{259200}(23,\cdot)\) | 259200.bad | 2160 | no | \(-1\) | \(1\) | \(e\left(\frac{191}{216}\right)\) | \(e\left(\frac{293}{2160}\right)\) | \(e\left(\frac{1387}{2160}\right)\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{173}{720}\right)\) | \(e\left(\frac{989}{1080}\right)\) | \(e\left(\frac{971}{2160}\right)\) | \(e\left(\frac{64}{135}\right)\) | \(e\left(\frac{319}{720}\right)\) | \(e\left(\frac{131}{1080}\right)\) |
\(\chi_{259200}(29,\cdot)\) | 259200.bay | 4320 | yes | \(-1\) | \(1\) | \(e\left(\frac{389}{432}\right)\) | \(e\left(\frac{977}{4320}\right)\) | \(e\left(\frac{163}{4320}\right)\) | \(e\left(\frac{193}{360}\right)\) | \(e\left(\frac{137}{1440}\right)\) | \(e\left(\frac{971}{2160}\right)\) | \(e\left(\frac{1439}{4320}\right)\) | \(e\left(\frac{137}{540}\right)\) | \(e\left(\frac{1111}{1440}\right)\) | \(e\left(\frac{59}{2160}\right)\) |
\(\chi_{259200}(31,\cdot)\) | 259200.wu | 540 | no | \(-1\) | \(1\) | \(e\left(\frac{25}{27}\right)\) | \(e\left(\frac{521}{540}\right)\) | \(e\left(\frac{169}{540}\right)\) | \(e\left(\frac{19}{45}\right)\) | \(e\left(\frac{41}{180}\right)\) | \(e\left(\frac{64}{135}\right)\) | \(e\left(\frac{137}{540}\right)\) | \(e\left(\frac{29}{270}\right)\) | \(e\left(\frac{73}{180}\right)\) | \(e\left(\frac{197}{270}\right)\) |
\(\chi_{259200}(37,\cdot)\) | 259200.zk | 1440 | no | \(-1\) | \(1\) | \(e\left(\frac{73}{144}\right)\) | \(e\left(\frac{1033}{1440}\right)\) | \(e\left(\frac{707}{1440}\right)\) | \(e\left(\frac{47}{120}\right)\) | \(e\left(\frac{193}{480}\right)\) | \(e\left(\frac{319}{720}\right)\) | \(e\left(\frac{1111}{1440}\right)\) | \(e\left(\frac{73}{180}\right)\) | \(e\left(\frac{119}{480}\right)\) | \(e\left(\frac{331}{720}\right)\) |
\(\chi_{259200}(41,\cdot)\) | 259200.baa | 2160 | no | \(-1\) | \(1\) | \(e\left(\frac{17}{216}\right)\) | \(e\left(\frac{1397}{2160}\right)\) | \(e\left(\frac{1543}{2160}\right)\) | \(e\left(\frac{43}{180}\right)\) | \(e\left(\frac{197}{720}\right)\) | \(e\left(\frac{131}{1080}\right)\) | \(e\left(\frac{59}{2160}\right)\) | \(e\left(\frac{197}{270}\right)\) | \(e\left(\frac{331}{720}\right)\) | \(e\left(\frac{1019}{1080}\right)\) |
\(\chi_{259200}(43,\cdot)\) | 259200.yk | 864 | no | \(1\) | \(1\) | \(e\left(\frac{359}{432}\right)\) | \(e\left(\frac{715}{864}\right)\) | \(e\left(\frac{89}{864}\right)\) | \(e\left(\frac{41}{72}\right)\) | \(e\left(\frac{115}{288}\right)\) | \(e\left(\frac{397}{432}\right)\) | \(e\left(\frac{37}{864}\right)\) | \(e\left(\frac{97}{108}\right)\) | \(e\left(\frac{149}{288}\right)\) | \(e\left(\frac{337}{432}\right)\) |
\(\chi_{259200}(47,\cdot)\) | 259200.zf | 1080 | no | \(-1\) | \(1\) | \(e\left(\frac{31}{54}\right)\) | \(e\left(\frac{713}{1080}\right)\) | \(e\left(\frac{877}{1080}\right)\) | \(e\left(\frac{149}{180}\right)\) | \(e\left(\frac{233}{360}\right)\) | \(e\left(\frac{71}{135}\right)\) | \(e\left(\frac{671}{1080}\right)\) | \(e\left(\frac{241}{270}\right)\) | \(e\left(\frac{169}{360}\right)\) | \(e\left(\frac{281}{540}\right)\) |
\(\chi_{259200}(49,\cdot)\) | 259200.sr | 216 | no | \(1\) | \(1\) | \(e\left(\frac{25}{108}\right)\) | \(e\left(\frac{179}{216}\right)\) | \(e\left(\frac{133}{216}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{83}{108}\right)\) | \(e\left(\frac{173}{216}\right)\) | \(e\left(\frac{23}{27}\right)\) | \(e\left(\frac{1}{72}\right)\) | \(e\left(\frac{17}{108}\right)\) |
\(\chi_{259200}(53,\cdot)\) | 259200.wl | 480 | no | \(1\) | \(1\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{343}{480}\right)\) | \(e\left(\frac{317}{480}\right)\) | \(e\left(\frac{17}{40}\right)\) | \(e\left(\frac{143}{160}\right)\) | \(e\left(\frac{49}{240}\right)\) | \(e\left(\frac{361}{480}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{9}{160}\right)\) | \(e\left(\frac{61}{240}\right)\) |
\(\chi_{259200}(59,\cdot)\) | 259200.bap | 4320 | yes | \(1\) | \(1\) | \(e\left(\frac{199}{432}\right)\) | \(e\left(\frac{3139}{4320}\right)\) | \(e\left(\frac{1481}{4320}\right)\) | \(e\left(\frac{11}{360}\right)\) | \(e\left(\frac{1099}{1440}\right)\) | \(e\left(\frac{2137}{2160}\right)\) | \(e\left(\frac{3613}{4320}\right)\) | \(e\left(\frac{289}{540}\right)\) | \(e\left(\frac{677}{1440}\right)\) | \(e\left(\frac{2113}{2160}\right)\) |
\(\chi_{259200}(61,\cdot)\) | 259200.bam | 4320 | yes | \(1\) | \(1\) | \(e\left(\frac{149}{432}\right)\) | \(e\left(\frac{3401}{4320}\right)\) | \(e\left(\frac{3499}{4320}\right)\) | \(e\left(\frac{289}{360}\right)\) | \(e\left(\frac{401}{1440}\right)\) | \(e\left(\frac{1523}{2160}\right)\) | \(e\left(\frac{1127}{4320}\right)\) | \(e\left(\frac{221}{540}\right)\) | \(e\left(\frac{703}{1440}\right)\) | \(e\left(\frac{107}{2160}\right)\) |
\(\chi_{259200}(67,\cdot)\) | 259200.bar | 4320 | yes | \(1\) | \(1\) | \(e\left(\frac{313}{432}\right)\) | \(e\left(\frac{4153}{4320}\right)\) | \(e\left(\frac{3347}{4320}\right)\) | \(e\left(\frac{347}{360}\right)\) | \(e\left(\frac{1393}{1440}\right)\) | \(e\left(\frac{1999}{2160}\right)\) | \(e\left(\frac{2071}{4320}\right)\) | \(e\left(\frac{403}{540}\right)\) | \(e\left(\frac{1319}{1440}\right)\) | \(e\left(\frac{1291}{2160}\right)\) |
\(\chi_{259200}(71,\cdot)\) | 259200.xp | 720 | no | \(1\) | \(1\) | \(e\left(\frac{53}{72}\right)\) | \(e\left(\frac{317}{720}\right)\) | \(e\left(\frac{103}{720}\right)\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{77}{240}\right)\) | \(e\left(\frac{311}{360}\right)\) | \(e\left(\frac{59}{720}\right)\) | \(e\left(\frac{31}{45}\right)\) | \(e\left(\frac{91}{240}\right)\) | \(e\left(\frac{299}{360}\right)\) |
\(\chi_{259200}(73,\cdot)\) | 259200.xx | 720 | no | \(-1\) | \(1\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{331}{720}\right)\) | \(e\left(\frac{149}{720}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{91}{240}\right)\) | \(e\left(\frac{283}{360}\right)\) | \(e\left(\frac{157}{720}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{113}{240}\right)\) | \(e\left(\frac{97}{360}\right)\) |
\(\chi_{259200}(77,\cdot)\) | 259200.bas | 4320 | yes | \(1\) | \(1\) | \(e\left(\frac{229}{432}\right)\) | \(e\left(\frac{541}{4320}\right)\) | \(e\left(\frac{3359}{4320}\right)\) | \(e\left(\frac{179}{360}\right)\) | \(e\left(\frac{1381}{1440}\right)\) | \(e\left(\frac{43}{2160}\right)\) | \(e\left(\frac{547}{4320}\right)\) | \(e\left(\frac{481}{540}\right)\) | \(e\left(\frac{323}{1440}\right)\) | \(e\left(\frac{1567}{2160}\right)\) |
\(\chi_{259200}(79,\cdot)\) | 259200.yv | 1080 | no | \(-1\) | \(1\) | \(e\left(\frac{59}{108}\right)\) | \(e\left(\frac{1043}{1080}\right)\) | \(e\left(\frac{457}{1080}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{203}{360}\right)\) | \(e\left(\frac{29}{540}\right)\) | \(e\left(\frac{281}{1080}\right)\) | \(e\left(\frac{181}{270}\right)\) | \(e\left(\frac{109}{360}\right)\) | \(e\left(\frac{341}{540}\right)\) |
\(\chi_{259200}(83,\cdot)\) | 259200.bat | 4320 | yes | \(-1\) | \(1\) | \(e\left(\frac{317}{432}\right)\) | \(e\left(\frac{3173}{4320}\right)\) | \(e\left(\frac{1207}{4320}\right)\) | \(e\left(\frac{247}{360}\right)\) | \(e\left(\frac{173}{1440}\right)\) | \(e\left(\frac{899}{2160}\right)\) | \(e\left(\frac{3851}{4320}\right)\) | \(e\left(\frac{443}{540}\right)\) | \(e\left(\frac{859}{1440}\right)\) | \(e\left(\frac{311}{2160}\right)\) |
\(\chi_{259200}(89,\cdot)\) | 259200.xo | 720 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{72}\right)\) | \(e\left(\frac{241}{720}\right)\) | \(e\left(\frac{419}{720}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{1}{240}\right)\) | \(e\left(\frac{283}{360}\right)\) | \(e\left(\frac{607}{720}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{23}{240}\right)\) | \(e\left(\frac{7}{360}\right)\) |
\(\chi_{259200}(91,\cdot)\) | 259200.zi | 1440 | no | \(-1\) | \(1\) | \(e\left(\frac{61}{144}\right)\) | \(e\left(\frac{1273}{1440}\right)\) | \(e\left(\frac{107}{1440}\right)\) | \(e\left(\frac{17}{120}\right)\) | \(e\left(\frac{193}{480}\right)\) | \(e\left(\frac{379}{720}\right)\) | \(e\left(\frac{1351}{1440}\right)\) | \(e\left(\frac{43}{180}\right)\) | \(e\left(\frac{479}{480}\right)\) | \(e\left(\frac{571}{720}\right)\) |
\(\chi_{259200}(97,\cdot)\) | 259200.xi | 540 | no | \(-1\) | \(1\) | \(e\left(\frac{101}{108}\right)\) | \(e\left(\frac{439}{540}\right)\) | \(e\left(\frac{133}{270}\right)\) | \(e\left(\frac{89}{180}\right)\) | \(e\left(\frac{109}{180}\right)\) | \(e\left(\frac{359}{540}\right)\) | \(e\left(\frac{103}{540}\right)\) | \(e\left(\frac{38}{135}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{223}{270}\right)\) |
\(\chi_{259200}(101,\cdot)\) | 259200.yn | 864 | no | \(-1\) | \(1\) | \(e\left(\frac{95}{432}\right)\) | \(e\left(\frac{799}{864}\right)\) | \(e\left(\frac{797}{864}\right)\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{199}{288}\right)\) | \(e\left(\frac{13}{432}\right)\) | \(e\left(\frac{625}{864}\right)\) | \(e\left(\frac{55}{108}\right)\) | \(e\left(\frac{137}{288}\right)\) | \(e\left(\frac{421}{432}\right)\) |
\(\chi_{259200}(103,\cdot)\) | 259200.baf | 2160 | no | \(1\) | \(1\) | \(e\left(\frac{5}{216}\right)\) | \(e\left(\frac{1691}{2160}\right)\) | \(e\left(\frac{1429}{2160}\right)\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{491}{720}\right)\) | \(e\left(\frac{83}{1080}\right)\) | \(e\left(\frac{2117}{2160}\right)\) | \(e\left(\frac{133}{135}\right)\) | \(e\left(\frac{433}{720}\right)\) | \(e\left(\frac{17}{1080}\right)\) |
\(\chi_{259200}(107,\cdot)\) | 259200.ok | 96 | no | \(-1\) | \(1\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{19}{96}\right)\) | \(e\left(\frac{17}{96}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{11}{32}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{61}{96}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{13}{32}\right)\) | \(e\left(\frac{1}{48}\right)\) |
\(\chi_{259200}(109,\cdot)\) | 259200.we | 480 | no | \(1\) | \(1\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{301}{480}\right)\) | \(e\left(\frac{359}{480}\right)\) | \(e\left(\frac{9}{40}\right)\) | \(e\left(\frac{21}{160}\right)\) | \(e\left(\frac{103}{240}\right)\) | \(e\left(\frac{67}{480}\right)\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{43}{160}\right)\) | \(e\left(\frac{7}{240}\right)\) |
\(\chi_{259200}(113,\cdot)\) | 259200.ze | 1080 | no | \(1\) | \(1\) | \(e\left(\frac{13}{27}\right)\) | \(e\left(\frac{31}{1080}\right)\) | \(e\left(\frac{719}{1080}\right)\) | \(e\left(\frac{163}{180}\right)\) | \(e\left(\frac{151}{360}\right)\) | \(e\left(\frac{59}{270}\right)\) | \(e\left(\frac{757}{1080}\right)\) | \(e\left(\frac{61}{135}\right)\) | \(e\left(\frac{203}{360}\right)\) | \(e\left(\frac{247}{540}\right)\) |
\(\chi_{259200}(119,\cdot)\) | 259200.bab | 2160 | no | \(1\) | \(1\) | \(e\left(\frac{85}{216}\right)\) | \(e\left(\frac{1369}{2160}\right)\) | \(e\left(\frac{371}{2160}\right)\) | \(e\left(\frac{161}{180}\right)\) | \(e\left(\frac{409}{720}\right)\) | \(e\left(\frac{7}{1080}\right)\) | \(e\left(\frac{943}{2160}\right)\) | \(e\left(\frac{47}{135}\right)\) | \(e\left(\frac{647}{720}\right)\) | \(e\left(\frac{343}{1080}\right)\) |