sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2600, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([0,30,27,5]))
pari:[g,chi] = znchar(Mod(1237,2600))
Modulus: | 2600 | |
Conductor: | 2600 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 60 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ2600(197,⋅)
χ2600(453,⋅)
χ2600(717,⋅)
χ2600(813,⋅)
χ2600(877,⋅)
χ2600(973,⋅)
χ2600(1237,⋅)
χ2600(1333,⋅)
χ2600(1397,⋅)
χ2600(1853,⋅)
χ2600(1917,⋅)
χ2600(2013,⋅)
χ2600(2277,⋅)
χ2600(2373,⋅)
χ2600(2437,⋅)
χ2600(2533,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1951,1301,1977,1601) → (1,−1,e(209),e(121))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 17 | 19 | 21 | 23 | 27 | 29 |
χ2600(1237,a) |
1 | 1 | e(6059) | e(61) | e(3029) | e(6017) | e(601) | e(601) | e(203) | e(6047) | e(2019) | e(1511) |
sage:chi.jacobi_sum(n)