Properties

Label 2664.1931
Modulus $2664$
Conductor $2664$
Order $18$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2664, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,9,15,16]))
 
pari: [g,chi] = znchar(Mod(1931,2664))
 

Basic properties

Modulus: \(2664\)
Conductor: \(2664\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2664.ez

\(\chi_{2664}(83,\cdot)\) \(\chi_{2664}(995,\cdot)\) \(\chi_{2664}(1163,\cdot)\) \(\chi_{2664}(1307,\cdot)\) \(\chi_{2664}(1931,\cdot)\) \(\chi_{2664}(2291,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((1999,1333,2369,1297)\) → \((-1,-1,e\left(\frac{5}{6}\right),e\left(\frac{8}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 2664 }(1931, a) \) \(1\)\(1\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{5}{18}\right)\)\(-1\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{1}{9}\right)\)\(1\)\(e\left(\frac{2}{9}\right)\)\(1\)\(e\left(\frac{1}{6}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2664 }(1931,a) \;\) at \(\;a = \) e.g. 2