from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(269, base_ring=CyclotomicField(134))
M = H._module
chi = DirichletCharacter(H, M([8]))
pari: [g,chi] = znchar(Mod(169,269))
χ269(5,⋅)
χ269(14,⋅)
χ269(16,⋅)
χ269(21,⋅)
χ269(23,⋅)
χ269(24,⋅)
χ269(25,⋅)
χ269(36,⋅)
χ269(37,⋅)
χ269(38,⋅)
χ269(41,⋅)
χ269(44,⋅)
χ269(47,⋅)
χ269(52,⋅)
χ269(53,⋅)
χ269(54,⋅)
χ269(57,⋅)
χ269(58,⋅)
χ269(61,⋅)
χ269(62,⋅)
χ269(66,⋅)
χ269(67,⋅)
χ269(70,⋅)
χ269(78,⋅)
χ269(80,⋅)
χ269(81,⋅)
χ269(87,⋅)
χ269(93,⋅)
χ269(99,⋅)
χ269(105,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
2 → e(674)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ269(169,a) |
1 | 1 | e(674) | e(6734) | e(678) | e(6728) | e(6738) | e(679) | e(6712) | e(671) | e(6732) | e(6749) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)