Properties

Label 269.169
Modulus 269269
Conductor 269269
Order 6767
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(269, base_ring=CyclotomicField(134))
 
M = H._module
 
chi = DirichletCharacter(H, M([8]))
 
pari: [g,chi] = znchar(Mod(169,269))
 

Basic properties

Modulus: 269269
Conductor: 269269
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 6767
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 269.d

χ269(5,)\chi_{269}(5,\cdot) χ269(14,)\chi_{269}(14,\cdot) χ269(16,)\chi_{269}(16,\cdot) χ269(21,)\chi_{269}(21,\cdot) χ269(23,)\chi_{269}(23,\cdot) χ269(24,)\chi_{269}(24,\cdot) χ269(25,)\chi_{269}(25,\cdot) χ269(36,)\chi_{269}(36,\cdot) χ269(37,)\chi_{269}(37,\cdot) χ269(38,)\chi_{269}(38,\cdot) χ269(41,)\chi_{269}(41,\cdot) χ269(44,)\chi_{269}(44,\cdot) χ269(47,)\chi_{269}(47,\cdot) χ269(52,)\chi_{269}(52,\cdot) χ269(53,)\chi_{269}(53,\cdot) χ269(54,)\chi_{269}(54,\cdot) χ269(57,)\chi_{269}(57,\cdot) χ269(58,)\chi_{269}(58,\cdot) χ269(61,)\chi_{269}(61,\cdot) χ269(62,)\chi_{269}(62,\cdot) χ269(66,)\chi_{269}(66,\cdot) χ269(67,)\chi_{269}(67,\cdot) χ269(70,)\chi_{269}(70,\cdot) χ269(78,)\chi_{269}(78,\cdot) χ269(80,)\chi_{269}(80,\cdot) χ269(81,)\chi_{269}(81,\cdot) χ269(87,)\chi_{269}(87,\cdot) χ269(93,)\chi_{269}(93,\cdot) χ269(99,)\chi_{269}(99,\cdot) χ269(105,)\chi_{269}(105,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ67)\Q(\zeta_{67})
Fixed field: Number field defined by a degree 67 polynomial

Values on generators

22e(467)e\left(\frac{4}{67}\right)

First values

aa 1-111223344556677889910101111
χ269(169,a) \chi_{ 269 }(169, a) 1111e(467)e\left(\frac{4}{67}\right)e(3467)e\left(\frac{34}{67}\right)e(867)e\left(\frac{8}{67}\right)e(2867)e\left(\frac{28}{67}\right)e(3867)e\left(\frac{38}{67}\right)e(967)e\left(\frac{9}{67}\right)e(1267)e\left(\frac{12}{67}\right)e(167)e\left(\frac{1}{67}\right)e(3267)e\left(\frac{32}{67}\right)e(4967)e\left(\frac{49}{67}\right)
sage: chi.jacobi_sum(n)
 
χ269(169,a)   \chi_{ 269 }(169,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ269(169,))   \tau_{ a }( \chi_{ 269 }(169,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ269(169,),χ269(n,))   J(\chi_{ 269 }(169,·),\chi_{ 269 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ269(169,))  K(a,b,\chi_{ 269 }(169,·)) \; at   a,b=\; a,b = e.g. 1,2