Properties

Label 27040.15933
Modulus $27040$
Conductor $27040$
Order $104$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(27040, base_ring=CyclotomicField(104))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,39,78,42]))
 
pari: [g,chi] = znchar(Mod(15933,27040))
 

Basic properties

Modulus: \(27040\)
Conductor: \(27040\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(104\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 27040.mb

\(\chi_{27040}(333,\cdot)\) \(\chi_{27040}(837,\cdot)\) \(\chi_{27040}(1373,\cdot)\) \(\chi_{27040}(1877,\cdot)\) \(\chi_{27040}(2413,\cdot)\) \(\chi_{27040}(2917,\cdot)\) \(\chi_{27040}(3453,\cdot)\) \(\chi_{27040}(4997,\cdot)\) \(\chi_{27040}(5533,\cdot)\) \(\chi_{27040}(6037,\cdot)\) \(\chi_{27040}(6573,\cdot)\) \(\chi_{27040}(7077,\cdot)\) \(\chi_{27040}(7613,\cdot)\) \(\chi_{27040}(8117,\cdot)\) \(\chi_{27040}(8653,\cdot)\) \(\chi_{27040}(9157,\cdot)\) \(\chi_{27040}(9693,\cdot)\) \(\chi_{27040}(10197,\cdot)\) \(\chi_{27040}(10733,\cdot)\) \(\chi_{27040}(11237,\cdot)\) \(\chi_{27040}(11773,\cdot)\) \(\chi_{27040}(12277,\cdot)\) \(\chi_{27040}(12813,\cdot)\) \(\chi_{27040}(13317,\cdot)\) \(\chi_{27040}(13853,\cdot)\) \(\chi_{27040}(14357,\cdot)\) \(\chi_{27040}(14893,\cdot)\) \(\chi_{27040}(15397,\cdot)\) \(\chi_{27040}(15933,\cdot)\) \(\chi_{27040}(16437,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{104})$
Fixed field: Number field defined by a degree 104 polynomial (not computed)

Values on generators

\((18591,16901,10817,12001)\) → \((1,e\left(\frac{3}{8}\right),-i,e\left(\frac{21}{52}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 27040 }(15933, a) \) \(1\)\(1\)\(e\left(\frac{47}{104}\right)\)\(e\left(\frac{37}{52}\right)\)\(e\left(\frac{47}{52}\right)\)\(e\left(\frac{49}{104}\right)\)\(e\left(\frac{11}{52}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{17}{104}\right)\)\(1\)\(e\left(\frac{37}{104}\right)\)\(e\left(\frac{81}{104}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 27040 }(15933,a) \;\) at \(\;a = \) e.g. 2