sage: H = DirichletGroup(276)
pari: g = idealstar(,276,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 88 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{22}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{276}(139,\cdot)$, $\chi_{276}(185,\cdot)$, $\chi_{276}(97,\cdot)$ |
First 32 of 88 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(25\) | \(29\) | \(31\) | \(35\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{276}(1,\cdot)\) | 276.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{276}(5,\cdot)\) | 276.k | 22 | no | \(1\) | \(1\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) |
\(\chi_{276}(7,\cdot)\) | 276.m | 22 | no | \(1\) | \(1\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{17}{22}\right)\) |
\(\chi_{276}(11,\cdot)\) | 276.j | 22 | yes | \(-1\) | \(1\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) |
\(\chi_{276}(13,\cdot)\) | 276.i | 11 | no | \(1\) | \(1\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) |
\(\chi_{276}(17,\cdot)\) | 276.k | 22 | no | \(1\) | \(1\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) |
\(\chi_{276}(19,\cdot)\) | 276.m | 22 | no | \(1\) | \(1\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{3}{22}\right)\) |
\(\chi_{276}(25,\cdot)\) | 276.i | 11 | no | \(1\) | \(1\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) |
\(\chi_{276}(29,\cdot)\) | 276.n | 22 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) |
\(\chi_{276}(31,\cdot)\) | 276.l | 22 | no | \(-1\) | \(1\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{21}{22}\right)\) |
\(\chi_{276}(35,\cdot)\) | 276.o | 22 | yes | \(1\) | \(1\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) |
\(\chi_{276}(37,\cdot)\) | 276.p | 22 | no | \(-1\) | \(1\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) |
\(\chi_{276}(41,\cdot)\) | 276.n | 22 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) |
\(\chi_{276}(43,\cdot)\) | 276.m | 22 | no | \(1\) | \(1\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{1}{22}\right)\) |
\(\chi_{276}(47,\cdot)\) | 276.c | 2 | no | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) | \(1\) |
\(\chi_{276}(49,\cdot)\) | 276.i | 11 | no | \(1\) | \(1\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) |
\(\chi_{276}(53,\cdot)\) | 276.k | 22 | no | \(1\) | \(1\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{17}{22}\right)\) |
\(\chi_{276}(55,\cdot)\) | 276.l | 22 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{13}{22}\right)\) |
\(\chi_{276}(59,\cdot)\) | 276.o | 22 | yes | \(1\) | \(1\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{8}{11}\right)\) |
\(\chi_{276}(61,\cdot)\) | 276.p | 22 | no | \(-1\) | \(1\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) |
\(\chi_{276}(65,\cdot)\) | 276.k | 22 | no | \(1\) | \(1\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) |
\(\chi_{276}(67,\cdot)\) | 276.m | 22 | no | \(1\) | \(1\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{7}{22}\right)\) |
\(\chi_{276}(71,\cdot)\) | 276.o | 22 | yes | \(1\) | \(1\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) |
\(\chi_{276}(73,\cdot)\) | 276.i | 11 | no | \(1\) | \(1\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) |
\(\chi_{276}(77,\cdot)\) | 276.n | 22 | no | \(-1\) | \(1\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{21}{22}\right)\) |
\(\chi_{276}(79,\cdot)\) | 276.m | 22 | no | \(1\) | \(1\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{5}{22}\right)\) |
\(\chi_{276}(83,\cdot)\) | 276.j | 22 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{1}{11}\right)\) |
\(\chi_{276}(85,\cdot)\) | 276.i | 11 | no | \(1\) | \(1\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) |
\(\chi_{276}(89,\cdot)\) | 276.k | 22 | no | \(1\) | \(1\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{1}{22}\right)\) |
\(\chi_{276}(91,\cdot)\) | 276.e | 2 | no | \(1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(-1\) |
\(\chi_{276}(95,\cdot)\) | 276.o | 22 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{6}{11}\right)\) |
\(\chi_{276}(97,\cdot)\) | 276.p | 22 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) |