Properties

Label 2793.1223
Modulus $2793$
Conductor $2793$
Order $42$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([21,5,14]))
 
pari: [g,chi] = znchar(Mod(1223,2793))
 

Basic properties

Modulus: \(2793\)
Conductor: \(2793\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2793.dw

\(\chi_{2793}(26,\cdot)\) \(\chi_{2793}(353,\cdot)\) \(\chi_{2793}(425,\cdot)\) \(\chi_{2793}(752,\cdot)\) \(\chi_{2793}(824,\cdot)\) \(\chi_{2793}(1151,\cdot)\) \(\chi_{2793}(1223,\cdot)\) \(\chi_{2793}(1622,\cdot)\) \(\chi_{2793}(1949,\cdot)\) \(\chi_{2793}(2021,\cdot)\) \(\chi_{2793}(2348,\cdot)\) \(\chi_{2793}(2747,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

\((932,2110,2206)\) → \((-1,e\left(\frac{5}{42}\right),e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(20\)
\( \chi_{ 2793 }(1223, a) \) \(1\)\(1\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{11}{42}\right)\)\(e\left(\frac{25}{42}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{1}{7}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2793 }(1223,a) \;\) at \(\;a = \) e.g. 2