sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2793, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([21,5,14]))
pari:[g,chi] = znchar(Mod(1223,2793))
Modulus: | 2793 | |
Conductor: | 2793 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 42 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ2793(26,⋅)
χ2793(353,⋅)
χ2793(425,⋅)
χ2793(752,⋅)
χ2793(824,⋅)
χ2793(1151,⋅)
χ2793(1223,⋅)
χ2793(1622,⋅)
χ2793(1949,⋅)
χ2793(2021,⋅)
χ2793(2348,⋅)
χ2793(2747,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(932,2110,2206) → (−1,e(425),e(31))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 11 | 13 | 16 | 17 | 20 |
χ2793(1223,a) |
1 | 1 | e(1413) | e(76) | e(72) | e(1411) | e(143) | e(4211) | e(4225) | e(75) | e(2117) | e(71) |
sage:chi.jacobi_sum(n)