sage: H = DirichletGroup(28900)
pari: g = idealstar(,28900,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 10880 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{4}\times C_{1360}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{28900}(14451,\cdot)$, $\chi_{28900}(24277,\cdot)$, $\chi_{28900}(23701,\cdot)$ |
First 32 of 10880 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{28900}(1,\cdot)\) | 28900.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{28900}(3,\cdot)\) | 28900.fg | 1360 | yes | \(-1\) | \(1\) | \(e\left(\frac{1297}{1360}\right)\) | \(e\left(\frac{223}{272}\right)\) | \(e\left(\frac{617}{680}\right)\) | \(e\left(\frac{251}{1360}\right)\) | \(e\left(\frac{63}{170}\right)\) | \(e\left(\frac{579}{680}\right)\) | \(e\left(\frac{263}{340}\right)\) | \(e\left(\frac{231}{1360}\right)\) | \(e\left(\frac{1171}{1360}\right)\) | \(e\left(\frac{217}{1360}\right)\) |
\(\chi_{28900}(7,\cdot)\) | 28900.el | 272 | no | \(-1\) | \(1\) | \(e\left(\frac{223}{272}\right)\) | \(e\left(\frac{21}{272}\right)\) | \(e\left(\frac{87}{136}\right)\) | \(e\left(\frac{165}{272}\right)\) | \(e\left(\frac{15}{34}\right)\) | \(e\left(\frac{133}{136}\right)\) | \(e\left(\frac{61}{68}\right)\) | \(e\left(\frac{89}{272}\right)\) | \(e\left(\frac{125}{272}\right)\) | \(e\left(\frac{199}{272}\right)\) |
\(\chi_{28900}(9,\cdot)\) | 28900.ff | 680 | no | \(1\) | \(1\) | \(e\left(\frac{617}{680}\right)\) | \(e\left(\frac{87}{136}\right)\) | \(e\left(\frac{277}{340}\right)\) | \(e\left(\frac{251}{680}\right)\) | \(e\left(\frac{63}{85}\right)\) | \(e\left(\frac{239}{340}\right)\) | \(e\left(\frac{93}{170}\right)\) | \(e\left(\frac{231}{680}\right)\) | \(e\left(\frac{491}{680}\right)\) | \(e\left(\frac{217}{680}\right)\) |
\(\chi_{28900}(11,\cdot)\) | 28900.fj | 1360 | yes | \(1\) | \(1\) | \(e\left(\frac{251}{1360}\right)\) | \(e\left(\frac{165}{272}\right)\) | \(e\left(\frac{251}{680}\right)\) | \(e\left(\frac{333}{1360}\right)\) | \(e\left(\frac{263}{340}\right)\) | \(e\left(\frac{57}{680}\right)\) | \(e\left(\frac{269}{340}\right)\) | \(e\left(\frac{213}{1360}\right)\) | \(e\left(\frac{753}{1360}\right)\) | \(e\left(\frac{231}{1360}\right)\) |
\(\chi_{28900}(13,\cdot)\) | 28900.en | 340 | no | \(-1\) | \(1\) | \(e\left(\frac{63}{170}\right)\) | \(e\left(\frac{15}{34}\right)\) | \(e\left(\frac{63}{85}\right)\) | \(e\left(\frac{263}{340}\right)\) | \(e\left(\frac{97}{340}\right)\) | \(e\left(\frac{16}{85}\right)\) | \(e\left(\frac{69}{85}\right)\) | \(e\left(\frac{12}{85}\right)\) | \(e\left(\frac{19}{170}\right)\) | \(e\left(\frac{331}{340}\right)\) |
\(\chi_{28900}(19,\cdot)\) | 28900.fe | 680 | yes | \(-1\) | \(1\) | \(e\left(\frac{579}{680}\right)\) | \(e\left(\frac{133}{136}\right)\) | \(e\left(\frac{239}{340}\right)\) | \(e\left(\frac{57}{680}\right)\) | \(e\left(\frac{16}{85}\right)\) | \(e\left(\frac{143}{340}\right)\) | \(e\left(\frac{141}{170}\right)\) | \(e\left(\frac{597}{680}\right)\) | \(e\left(\frac{377}{680}\right)\) | \(e\left(\frac{159}{680}\right)\) |
\(\chi_{28900}(21,\cdot)\) | 28900.es | 340 | no | \(1\) | \(1\) | \(e\left(\frac{263}{340}\right)\) | \(e\left(\frac{61}{68}\right)\) | \(e\left(\frac{93}{170}\right)\) | \(e\left(\frac{269}{340}\right)\) | \(e\left(\frac{69}{85}\right)\) | \(e\left(\frac{141}{170}\right)\) | \(e\left(\frac{57}{85}\right)\) | \(e\left(\frac{169}{340}\right)\) | \(e\left(\frac{109}{340}\right)\) | \(e\left(\frac{303}{340}\right)\) |
\(\chi_{28900}(23,\cdot)\) | 28900.fn | 1360 | yes | \(-1\) | \(1\) | \(e\left(\frac{231}{1360}\right)\) | \(e\left(\frac{89}{272}\right)\) | \(e\left(\frac{231}{680}\right)\) | \(e\left(\frac{213}{1360}\right)\) | \(e\left(\frac{12}{85}\right)\) | \(e\left(\frac{597}{680}\right)\) | \(e\left(\frac{169}{340}\right)\) | \(e\left(\frac{513}{1360}\right)\) | \(e\left(\frac{693}{1360}\right)\) | \(e\left(\frac{791}{1360}\right)\) |
\(\chi_{28900}(27,\cdot)\) | 28900.fg | 1360 | yes | \(-1\) | \(1\) | \(e\left(\frac{1171}{1360}\right)\) | \(e\left(\frac{125}{272}\right)\) | \(e\left(\frac{491}{680}\right)\) | \(e\left(\frac{753}{1360}\right)\) | \(e\left(\frac{19}{170}\right)\) | \(e\left(\frac{377}{680}\right)\) | \(e\left(\frac{109}{340}\right)\) | \(e\left(\frac{693}{1360}\right)\) | \(e\left(\frac{793}{1360}\right)\) | \(e\left(\frac{651}{1360}\right)\) |
\(\chi_{28900}(29,\cdot)\) | 28900.fl | 1360 | no | \(-1\) | \(1\) | \(e\left(\frac{217}{1360}\right)\) | \(e\left(\frac{199}{272}\right)\) | \(e\left(\frac{217}{680}\right)\) | \(e\left(\frac{231}{1360}\right)\) | \(e\left(\frac{331}{340}\right)\) | \(e\left(\frac{159}{680}\right)\) | \(e\left(\frac{303}{340}\right)\) | \(e\left(\frac{791}{1360}\right)\) | \(e\left(\frac{651}{1360}\right)\) | \(e\left(\frac{877}{1360}\right)\) |
\(\chi_{28900}(31,\cdot)\) | 28900.fj | 1360 | yes | \(1\) | \(1\) | \(e\left(\frac{453}{1360}\right)\) | \(e\left(\frac{171}{272}\right)\) | \(e\left(\frac{453}{680}\right)\) | \(e\left(\frac{899}{1360}\right)\) | \(e\left(\frac{29}{340}\right)\) | \(e\left(\frac{111}{680}\right)\) | \(e\left(\frac{327}{340}\right)\) | \(e\left(\frac{379}{1360}\right)\) | \(e\left(\frac{1359}{1360}\right)\) | \(e\left(\frac{1273}{1360}\right)\) |
\(\chi_{28900}(33,\cdot)\) | 28900.eo | 340 | no | \(-1\) | \(1\) | \(e\left(\frac{47}{340}\right)\) | \(e\left(\frac{29}{68}\right)\) | \(e\left(\frac{47}{170}\right)\) | \(e\left(\frac{73}{170}\right)\) | \(e\left(\frac{49}{340}\right)\) | \(e\left(\frac{159}{170}\right)\) | \(e\left(\frac{48}{85}\right)\) | \(e\left(\frac{111}{340}\right)\) | \(e\left(\frac{141}{340}\right)\) | \(e\left(\frac{28}{85}\right)\) |
\(\chi_{28900}(37,\cdot)\) | 28900.fm | 1360 | no | \(1\) | \(1\) | \(e\left(\frac{849}{1360}\right)\) | \(e\left(\frac{207}{272}\right)\) | \(e\left(\frac{169}{680}\right)\) | \(e\left(\frac{147}{1360}\right)\) | \(e\left(\frac{43}{85}\right)\) | \(e\left(\frac{503}{680}\right)\) | \(e\left(\frac{131}{340}\right)\) | \(e\left(\frac{967}{1360}\right)\) | \(e\left(\frac{1187}{1360}\right)\) | \(e\left(\frac{249}{1360}\right)\) |
\(\chi_{28900}(39,\cdot)\) | 28900.fk | 1360 | yes | \(1\) | \(1\) | \(e\left(\frac{441}{1360}\right)\) | \(e\left(\frac{71}{272}\right)\) | \(e\left(\frac{441}{680}\right)\) | \(e\left(\frac{1303}{1360}\right)\) | \(e\left(\frac{223}{340}\right)\) | \(e\left(\frac{27}{680}\right)\) | \(e\left(\frac{199}{340}\right)\) | \(e\left(\frac{423}{1360}\right)\) | \(e\left(\frac{1323}{1360}\right)\) | \(e\left(\frac{181}{1360}\right)\) |
\(\chi_{28900}(41,\cdot)\) | 28900.fi | 1360 | no | \(-1\) | \(1\) | \(e\left(\frac{39}{1360}\right)\) | \(e\left(\frac{121}{272}\right)\) | \(e\left(\frac{39}{680}\right)\) | \(e\left(\frac{897}{1360}\right)\) | \(e\left(\frac{7}{340}\right)\) | \(e\left(\frac{273}{680}\right)\) | \(e\left(\frac{161}{340}\right)\) | \(e\left(\frac{537}{1360}\right)\) | \(e\left(\frac{117}{1360}\right)\) | \(e\left(\frac{1339}{1360}\right)\) |
\(\chi_{28900}(43,\cdot)\) | 28900.dr | 136 | no | \(1\) | \(1\) | \(e\left(\frac{79}{136}\right)\) | \(e\left(\frac{5}{136}\right)\) | \(e\left(\frac{11}{68}\right)\) | \(e\left(\frac{83}{136}\right)\) | \(e\left(\frac{7}{68}\right)\) | \(e\left(\frac{43}{68}\right)\) | \(e\left(\frac{21}{34}\right)\) | \(e\left(\frac{5}{136}\right)\) | \(e\left(\frac{101}{136}\right)\) | \(e\left(\frac{49}{136}\right)\) |
\(\chi_{28900}(47,\cdot)\) | 28900.em | 340 | yes | \(1\) | \(1\) | \(e\left(\frac{139}{170}\right)\) | \(e\left(\frac{25}{34}\right)\) | \(e\left(\frac{54}{85}\right)\) | \(e\left(\frac{189}{340}\right)\) | \(e\left(\frac{71}{340}\right)\) | \(e\left(\frac{161}{170}\right)\) | \(e\left(\frac{47}{85}\right)\) | \(e\left(\frac{71}{85}\right)\) | \(e\left(\frac{77}{170}\right)\) | \(e\left(\frac{223}{340}\right)\) |
\(\chi_{28900}(49,\cdot)\) | 28900.dp | 136 | no | \(1\) | \(1\) | \(e\left(\frac{87}{136}\right)\) | \(e\left(\frac{21}{136}\right)\) | \(e\left(\frac{19}{68}\right)\) | \(e\left(\frac{29}{136}\right)\) | \(e\left(\frac{15}{17}\right)\) | \(e\left(\frac{65}{68}\right)\) | \(e\left(\frac{27}{34}\right)\) | \(e\left(\frac{89}{136}\right)\) | \(e\left(\frac{125}{136}\right)\) | \(e\left(\frac{63}{136}\right)\) |
\(\chi_{28900}(53,\cdot)\) | 28900.fa | 680 | no | \(-1\) | \(1\) | \(e\left(\frac{141}{680}\right)\) | \(e\left(\frac{19}{136}\right)\) | \(e\left(\frac{141}{340}\right)\) | \(e\left(\frac{13}{680}\right)\) | \(e\left(\frac{31}{340}\right)\) | \(e\left(\frac{307}{340}\right)\) | \(e\left(\frac{59}{170}\right)\) | \(e\left(\frac{503}{680}\right)\) | \(e\left(\frac{423}{680}\right)\) | \(e\left(\frac{251}{680}\right)\) |
\(\chi_{28900}(57,\cdot)\) | 28900.ek | 272 | no | \(1\) | \(1\) | \(e\left(\frac{219}{272}\right)\) | \(e\left(\frac{217}{272}\right)\) | \(e\left(\frac{83}{136}\right)\) | \(e\left(\frac{73}{272}\right)\) | \(e\left(\frac{19}{34}\right)\) | \(e\left(\frac{37}{136}\right)\) | \(e\left(\frac{41}{68}\right)\) | \(e\left(\frac{13}{272}\right)\) | \(e\left(\frac{113}{272}\right)\) | \(e\left(\frac{107}{272}\right)\) |
\(\chi_{28900}(59,\cdot)\) | 28900.fe | 680 | yes | \(-1\) | \(1\) | \(e\left(\frac{177}{680}\right)\) | \(e\left(\frac{47}{136}\right)\) | \(e\left(\frac{177}{340}\right)\) | \(e\left(\frac{331}{680}\right)\) | \(e\left(\frac{78}{85}\right)\) | \(e\left(\frac{49}{340}\right)\) | \(e\left(\frac{103}{170}\right)\) | \(e\left(\frac{31}{680}\right)\) | \(e\left(\frac{531}{680}\right)\) | \(e\left(\frac{637}{680}\right)\) |
\(\chi_{28900}(61,\cdot)\) | 28900.fi | 1360 | no | \(-1\) | \(1\) | \(e\left(\frac{751}{1360}\right)\) | \(e\left(\frac{161}{272}\right)\) | \(e\left(\frac{71}{680}\right)\) | \(e\left(\frac{953}{1360}\right)\) | \(e\left(\frac{283}{340}\right)\) | \(e\left(\frac{497}{680}\right)\) | \(e\left(\frac{49}{340}\right)\) | \(e\left(\frac{193}{1360}\right)\) | \(e\left(\frac{893}{1360}\right)\) | \(e\left(\frac{851}{1360}\right)\) |
\(\chi_{28900}(63,\cdot)\) | 28900.fg | 1360 | yes | \(-1\) | \(1\) | \(e\left(\frac{989}{1360}\right)\) | \(e\left(\frac{195}{272}\right)\) | \(e\left(\frac{309}{680}\right)\) | \(e\left(\frac{1327}{1360}\right)\) | \(e\left(\frac{31}{170}\right)\) | \(e\left(\frac{463}{680}\right)\) | \(e\left(\frac{151}{340}\right)\) | \(e\left(\frac{907}{1360}\right)\) | \(e\left(\frac{247}{1360}\right)\) | \(e\left(\frac{69}{1360}\right)\) |
\(\chi_{28900}(67,\cdot)\) | 28900.ev | 340 | yes | \(1\) | \(1\) | \(e\left(\frac{247}{340}\right)\) | \(e\left(\frac{41}{68}\right)\) | \(e\left(\frac{77}{170}\right)\) | \(e\left(\frac{39}{85}\right)\) | \(e\left(\frac{319}{340}\right)\) | \(e\left(\frac{57}{85}\right)\) | \(e\left(\frac{28}{85}\right)\) | \(e\left(\frac{171}{340}\right)\) | \(e\left(\frac{61}{340}\right)\) | \(e\left(\frac{73}{85}\right)\) |
\(\chi_{28900}(69,\cdot)\) | 28900.ea | 170 | no | \(1\) | \(1\) | \(e\left(\frac{21}{170}\right)\) | \(e\left(\frac{5}{34}\right)\) | \(e\left(\frac{21}{85}\right)\) | \(e\left(\frac{29}{85}\right)\) | \(e\left(\frac{87}{170}\right)\) | \(e\left(\frac{62}{85}\right)\) | \(e\left(\frac{23}{85}\right)\) | \(e\left(\frac{93}{170}\right)\) | \(e\left(\frac{63}{170}\right)\) | \(e\left(\frac{63}{85}\right)\) |
\(\chi_{28900}(71,\cdot)\) | 28900.fj | 1360 | yes | \(1\) | \(1\) | \(e\left(\frac{877}{1360}\right)\) | \(e\left(\frac{259}{272}\right)\) | \(e\left(\frac{197}{680}\right)\) | \(e\left(\frac{1131}{1360}\right)\) | \(e\left(\frac{201}{340}\right)\) | \(e\left(\frac{359}{680}\right)\) | \(e\left(\frac{203}{340}\right)\) | \(e\left(\frac{1091}{1360}\right)\) | \(e\left(\frac{1271}{1360}\right)\) | \(e\left(\frac{417}{1360}\right)\) |
\(\chi_{28900}(73,\cdot)\) | 28900.fh | 1360 | no | \(1\) | \(1\) | \(e\left(\frac{621}{1360}\right)\) | \(e\left(\frac{211}{272}\right)\) | \(e\left(\frac{621}{680}\right)\) | \(e\left(\frac{1023}{1360}\right)\) | \(e\left(\frac{59}{170}\right)\) | \(e\left(\frac{267}{680}\right)\) | \(e\left(\frac{79}{340}\right)\) | \(e\left(\frac{443}{1360}\right)\) | \(e\left(\frac{503}{1360}\right)\) | \(e\left(\frac{1261}{1360}\right)\) |
\(\chi_{28900}(77,\cdot)\) | 28900.fa | 680 | no | \(-1\) | \(1\) | \(e\left(\frac{3}{680}\right)\) | \(e\left(\frac{93}{136}\right)\) | \(e\left(\frac{3}{340}\right)\) | \(e\left(\frac{579}{680}\right)\) | \(e\left(\frac{73}{340}\right)\) | \(e\left(\frac{21}{340}\right)\) | \(e\left(\frac{117}{170}\right)\) | \(e\left(\frac{329}{680}\right)\) | \(e\left(\frac{9}{680}\right)\) | \(e\left(\frac{613}{680}\right)\) |
\(\chi_{28900}(79,\cdot)\) | 28900.fk | 1360 | yes | \(1\) | \(1\) | \(e\left(\frac{1107}{1360}\right)\) | \(e\left(\frac{45}{272}\right)\) | \(e\left(\frac{427}{680}\right)\) | \(e\left(\frac{301}{1360}\right)\) | \(e\left(\frac{81}{340}\right)\) | \(e\left(\frac{609}{680}\right)\) | \(e\left(\frac{333}{340}\right)\) | \(e\left(\frac{701}{1360}\right)\) | \(e\left(\frac{601}{1360}\right)\) | \(e\left(\frac{1287}{1360}\right)\) |
\(\chi_{28900}(81,\cdot)\) | 28900.es | 340 | no | \(1\) | \(1\) | \(e\left(\frac{277}{340}\right)\) | \(e\left(\frac{19}{68}\right)\) | \(e\left(\frac{107}{170}\right)\) | \(e\left(\frac{251}{340}\right)\) | \(e\left(\frac{41}{85}\right)\) | \(e\left(\frac{69}{170}\right)\) | \(e\left(\frac{8}{85}\right)\) | \(e\left(\frac{231}{340}\right)\) | \(e\left(\frac{151}{340}\right)\) | \(e\left(\frac{217}{340}\right)\) |
\(\chi_{28900}(83,\cdot)\) | 28900.fc | 680 | yes | \(1\) | \(1\) | \(e\left(\frac{669}{680}\right)\) | \(e\left(\frac{67}{136}\right)\) | \(e\left(\frac{329}{340}\right)\) | \(e\left(\frac{597}{680}\right)\) | \(e\left(\frac{299}{340}\right)\) | \(e\left(\frac{93}{340}\right)\) | \(e\left(\frac{81}{170}\right)\) | \(e\left(\frac{607}{680}\right)\) | \(e\left(\frac{647}{680}\right)\) | \(e\left(\frac{359}{680}\right)\) |