from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3040, base_ring=CyclotomicField(72))
M = H._module
chi = DirichletCharacter(H, M([0,45,18,68]))
pari: [g,chi] = znchar(Mod(1397,3040))
χ3040(13,⋅)
χ3040(117,⋅)
χ3040(173,⋅)
χ3040(333,⋅)
χ3040(357,⋅)
χ3040(413,⋅)
χ3040(573,⋅)
χ3040(813,⋅)
χ3040(1077,⋅)
χ3040(1237,⋅)
χ3040(1397,⋅)
χ3040(1477,⋅)
χ3040(1533,⋅)
χ3040(1637,⋅)
χ3040(1693,⋅)
χ3040(1853,⋅)
χ3040(1877,⋅)
χ3040(1933,⋅)
χ3040(2093,⋅)
χ3040(2333,⋅)
χ3040(2597,⋅)
χ3040(2757,⋅)
χ3040(2917,⋅)
χ3040(2997,⋅)
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(191,2661,1217,1921) → (1,e(85),i,e(1817))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 17 | 21 | 23 | 27 | 29 |
χ3040(1397,a) |
1 | 1 | e(7265) | e(61) | e(3629) | e(2411) | e(7261) | e(367) | e(725) | e(187) | e(2417) | e(7231) |