sage: H = DirichletGroup(312)
pari: g = idealstar(,312,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 96 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{2}\times C_{12}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{312}(79,\cdot)$, $\chi_{312}(157,\cdot)$, $\chi_{312}(209,\cdot)$, $\chi_{312}(145,\cdot)$ |
First 32 of 96 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{312}(1,\cdot)\) | 312.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{312}(5,\cdot)\) | 312.y | 4 | yes | \(1\) | \(1\) | \(-i\) | \(i\) | \(i\) | \(1\) | \(i\) | \(1\) | \(-1\) | \(1\) | \(-i\) | \(1\) |
\(\chi_{312}(7,\cdot)\) | 312.bs | 12 | no | \(1\) | \(1\) | \(i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{312}(11,\cdot)\) | 312.bq | 12 | yes | \(-1\) | \(1\) | \(i\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{312}(17,\cdot)\) | 312.bl | 6 | no | \(-1\) | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{312}(19,\cdot)\) | 312.bt | 12 | no | \(1\) | \(1\) | \(i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{312}(23,\cdot)\) | 312.bj | 6 | no | \(1\) | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{312}(25,\cdot)\) | 312.c | 2 | no | \(1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(1\) |
\(\chi_{312}(29,\cdot)\) | 312.bh | 6 | yes | \(-1\) | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{312}(31,\cdot)\) | 312.u | 4 | no | \(1\) | \(1\) | \(-i\) | \(-i\) | \(-i\) | \(-1\) | \(i\) | \(1\) | \(-1\) | \(1\) | \(i\) | \(-1\) |
\(\chi_{312}(35,\cdot)\) | 312.bn | 6 | yes | \(1\) | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{312}(37,\cdot)\) | 312.bv | 12 | no | \(-1\) | \(1\) | \(-i\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{312}(41,\cdot)\) | 312.bp | 12 | no | \(1\) | \(1\) | \(i\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{312}(43,\cdot)\) | 312.bi | 6 | no | \(-1\) | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{312}(47,\cdot)\) | 312.v | 4 | no | \(-1\) | \(1\) | \(-i\) | \(i\) | \(-i\) | \(1\) | \(-i\) | \(-1\) | \(-1\) | \(-1\) | \(-i\) | \(1\) |
\(\chi_{312}(49,\cdot)\) | 312.bf | 6 | no | \(1\) | \(1\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{312}(53,\cdot)\) | 312.p | 2 | no | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{312}(55,\cdot)\) | 312.bm | 6 | no | \(-1\) | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{312}(59,\cdot)\) | 312.bq | 12 | yes | \(-1\) | \(1\) | \(i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{312}(61,\cdot)\) | 312.bb | 6 | no | \(1\) | \(1\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{312}(67,\cdot)\) | 312.bt | 12 | no | \(1\) | \(1\) | \(i\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{312}(71,\cdot)\) | 312.br | 12 | no | \(-1\) | \(1\) | \(i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{312}(73,\cdot)\) | 312.s | 4 | no | \(-1\) | \(1\) | \(i\) | \(-i\) | \(-i\) | \(-1\) | \(i\) | \(-1\) | \(-1\) | \(1\) | \(i\) | \(1\) |
\(\chi_{312}(77,\cdot)\) | 312.b | 2 | yes | \(-1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(1\) |
\(\chi_{312}(79,\cdot)\) | 312.k | 2 | no | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-1\) |
\(\chi_{312}(83,\cdot)\) | 312.w | 4 | yes | \(-1\) | \(1\) | \(-i\) | \(-i\) | \(-i\) | \(1\) | \(-i\) | \(-1\) | \(-1\) | \(1\) | \(i\) | \(-1\) |
\(\chi_{312}(85,\cdot)\) | 312.bv | 12 | no | \(-1\) | \(1\) | \(-i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{312}(89,\cdot)\) | 312.bp | 12 | no | \(1\) | \(1\) | \(-i\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{312}(95,\cdot)\) | 312.bj | 6 | no | \(1\) | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{312}(97,\cdot)\) | 312.bu | 12 | no | \(-1\) | \(1\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{312}(101,\cdot)\) | 312.bg | 6 | yes | \(-1\) | \(1\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{312}(103,\cdot)\) | 312.i | 2 | no | \(-1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(-1\) |