Properties

Modulus $312$
Structure \(C_{2}\times C_{2}\times C_{2}\times C_{12}\)
Order $96$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(312)
 
pari: g = idealstar(,312,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 96
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{2}\times C_{12}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{312}(79,\cdot)$, $\chi_{312}(157,\cdot)$, $\chi_{312}(209,\cdot)$, $\chi_{312}(145,\cdot)$

First 32 of 96 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(5\) \(7\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{312}(1,\cdot)\) 312.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{312}(5,\cdot)\) 312.y 4 yes \(1\) \(1\) \(-i\) \(i\) \(i\) \(1\) \(i\) \(1\) \(-1\) \(1\) \(-i\) \(1\)
\(\chi_{312}(7,\cdot)\) 312.bs 12 no \(1\) \(1\) \(i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-i\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{312}(11,\cdot)\) 312.bq 12 yes \(-1\) \(1\) \(i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-i\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{312}(17,\cdot)\) 312.bl 6 no \(-1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{312}(19,\cdot)\) 312.bt 12 no \(1\) \(1\) \(i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{312}(23,\cdot)\) 312.bj 6 no \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{312}(25,\cdot)\) 312.c 2 no \(1\) \(1\) \(-1\) \(-1\) \(-1\) \(1\) \(-1\) \(1\) \(1\) \(1\) \(-1\) \(1\)
\(\chi_{312}(29,\cdot)\) 312.bh 6 yes \(-1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{312}(31,\cdot)\) 312.u 4 no \(1\) \(1\) \(-i\) \(-i\) \(-i\) \(-1\) \(i\) \(1\) \(-1\) \(1\) \(i\) \(-1\)
\(\chi_{312}(35,\cdot)\) 312.bn 6 yes \(1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{312}(37,\cdot)\) 312.bv 12 no \(-1\) \(1\) \(-i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{312}(41,\cdot)\) 312.bp 12 no \(1\) \(1\) \(i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(-i\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{312}(43,\cdot)\) 312.bi 6 no \(-1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{312}(47,\cdot)\) 312.v 4 no \(-1\) \(1\) \(-i\) \(i\) \(-i\) \(1\) \(-i\) \(-1\) \(-1\) \(-1\) \(-i\) \(1\)
\(\chi_{312}(49,\cdot)\) 312.bf 6 no \(1\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{312}(53,\cdot)\) 312.p 2 no \(-1\) \(1\) \(1\) \(1\) \(1\) \(-1\) \(-1\) \(-1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{312}(55,\cdot)\) 312.bm 6 no \(-1\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{312}(59,\cdot)\) 312.bq 12 yes \(-1\) \(1\) \(i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-i\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{312}(61,\cdot)\) 312.bb 6 no \(1\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{312}(67,\cdot)\) 312.bt 12 no \(1\) \(1\) \(i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{312}(71,\cdot)\) 312.br 12 no \(-1\) \(1\) \(i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{312}(73,\cdot)\) 312.s 4 no \(-1\) \(1\) \(i\) \(-i\) \(-i\) \(-1\) \(i\) \(-1\) \(-1\) \(1\) \(i\) \(1\)
\(\chi_{312}(77,\cdot)\) 312.b 2 yes \(-1\) \(1\) \(-1\) \(-1\) \(-1\) \(-1\) \(1\) \(-1\) \(1\) \(1\) \(-1\) \(1\)
\(\chi_{312}(79,\cdot)\) 312.k 2 no \(-1\) \(1\) \(1\) \(-1\) \(-1\) \(1\) \(-1\) \(-1\) \(1\) \(1\) \(-1\) \(-1\)
\(\chi_{312}(83,\cdot)\) 312.w 4 yes \(-1\) \(1\) \(-i\) \(-i\) \(-i\) \(1\) \(-i\) \(-1\) \(-1\) \(1\) \(i\) \(-1\)
\(\chi_{312}(85,\cdot)\) 312.bv 12 no \(-1\) \(1\) \(-i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{312}(89,\cdot)\) 312.bp 12 no \(1\) \(1\) \(-i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{312}(95,\cdot)\) 312.bj 6 no \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{312}(97,\cdot)\) 312.bu 12 no \(-1\) \(1\) \(-i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{312}(101,\cdot)\) 312.bg 6 yes \(-1\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{312}(103,\cdot)\) 312.i 2 no \(-1\) \(1\) \(-1\) \(1\) \(1\) \(1\) \(1\) \(-1\) \(1\) \(1\) \(1\) \(-1\)
Click here to search among the remaining 64 characters.