Properties

Label 319.10
Modulus $319$
Conductor $319$
Order $28$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(319, base_ring=CyclotomicField(28))
 
M = H._module
 
chi = DirichletCharacter(H, M([14,23]))
 
pari: [g,chi] = znchar(Mod(10,319))
 

Basic properties

Modulus: \(319\)
Conductor: \(319\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(28\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 319.q

\(\chi_{319}(10,\cdot)\) \(\chi_{319}(21,\cdot)\) \(\chi_{319}(32,\cdot)\) \(\chi_{319}(43,\cdot)\) \(\chi_{319}(76,\cdot)\) \(\chi_{319}(98,\cdot)\) \(\chi_{319}(131,\cdot)\) \(\chi_{319}(142,\cdot)\) \(\chi_{319}(153,\cdot)\) \(\chi_{319}(164,\cdot)\) \(\chi_{319}(230,\cdot)\) \(\chi_{319}(263,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: 28.28.1159427335739550761098088865697701264851767903254485069.1

Values on generators

\((233,89)\) → \((-1,e\left(\frac{23}{28}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(12\)
\( \chi_{ 319 }(10, a) \) \(1\)\(1\)\(e\left(\frac{9}{28}\right)\)\(e\left(\frac{3}{28}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{27}{28}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{11}{28}\right)\)\(-i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 319 }(10,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 319 }(10,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 319 }(10,·),\chi_{ 319 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 319 }(10,·)) \;\) at \(\; a,b = \) e.g. 1,2