from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(319, base_ring=CyclotomicField(28))
M = H._module
chi = DirichletCharacter(H, M([14,23]))
pari: [g,chi] = znchar(Mod(10,319))
Basic properties
Modulus: | \(319\) | |
Conductor: | \(319\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(28\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 319.q
\(\chi_{319}(10,\cdot)\) \(\chi_{319}(21,\cdot)\) \(\chi_{319}(32,\cdot)\) \(\chi_{319}(43,\cdot)\) \(\chi_{319}(76,\cdot)\) \(\chi_{319}(98,\cdot)\) \(\chi_{319}(131,\cdot)\) \(\chi_{319}(142,\cdot)\) \(\chi_{319}(153,\cdot)\) \(\chi_{319}(164,\cdot)\) \(\chi_{319}(230,\cdot)\) \(\chi_{319}(263,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{28})\) |
Fixed field: | 28.28.1159427335739550761098088865697701264851767903254485069.1 |
Values on generators
\((233,89)\) → \((-1,e\left(\frac{23}{28}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
\( \chi_{ 319 }(10, a) \) | \(1\) | \(1\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{3}{28}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{11}{28}\right)\) | \(-i\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)