from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(319, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([4,15]))
pari: [g,chi] = znchar(Mod(191,319))
Basic properties
Modulus: | \(319\) | |
Conductor: | \(319\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(20\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 319.p
\(\chi_{319}(70,\cdot)\) \(\chi_{319}(75,\cdot)\) \(\chi_{319}(104,\cdot)\) \(\chi_{319}(157,\cdot)\) \(\chi_{319}(191,\cdot)\) \(\chi_{319}(273,\cdot)\) \(\chi_{319}(278,\cdot)\) \(\chi_{319}(302,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{20})\) |
Fixed field: | Number field defined by a degree 20 polynomial |
Values on generators
\((233,89)\) → \((e\left(\frac{1}{5}\right),-i)\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
\( \chi_{ 319 }(191, a) \) | \(-1\) | \(1\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(i\) | \(i\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)